이과황분들 도와주세용
A에서 내린 수선의발이랑
D에서 내린 수선의발이랑
이은 선분이 어떻게 BC의 중점 M을 지나가나요? ㅠㅠ
자르면 대칭이라고 하는데 정확히 이해가 안가서 그러는데
혹시 자세히 설명 해주실분 계신가요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나만 시간이 멈춘 느낌
-
쩝 0
조용하니 재미가 없고만
-
언제??
-
나만 튕겼음? 3
5분 정도 튕겼는데
-
내가 왔다 9
다들 잘 지냈습니까
-
깨있는 사람 1
생존신고 하고가
-
젠장못잤어 2
크아악 버스에서자야겠다
-
헉 1
헉
-
ㅁㅊㅎㄱ ㅅㅍ ㅎㄴㅈ
-
엄 6
um
-
준 0
june
-
식 0
sick
-
쎄하네 3
하
-
고1까지 내신 좋았는데 고2때 완전히 내신 망치고 고3때 정시로 튼 입장으로써 1도...
-
ㅠ
-
밥숫가락으로 베라 퍼먹는중..
-
그렇게...무한N수의길로
-
그렇게 그는 7일 무수면을 하고
-
현역이 그냥 없던데...
-
하고 싶은게 많고 좋아하는 일이 많다는 건 좋은 것 11
가끔은 노래를 들으며 가슴이 뛰고 사업 아이템이 떠오르면 즐거워지고 수능문제가 슥슥...
-
하 0
뒤숭생숭하네 아주 많이
-
다들 굿밤 3
행복하시길
-
꾸중글 6
꾸중
-
겜이라도 할껄
-
기차지나간당 4
부지런행
-
개인적인 좌우명 4
네가 해결할 수 없는 일에 스트레스 받지 마라 그냥 아무 글이나 난사 중
-
국수 먹고 싶다 4
아악 배고파아ㅛ ㅜㅜ
-
해주세요 목표는 수의대인데 반년으로 될지, 한다면 휴학/무휴반 중 고민입니다. 국어...
-
십ㅋㅋㅋㅋㅋㅋ
-
마늘 먹고 싶다 2
아아
-
연락 얼마나 자주하고 얼마나 자주봄? 원래 친했는데 자꾸 열등감 표출해서 보기 싫어짐 시발
-
요즘이라기보단 그냥 살면서 뭘 해야할지 뭐가 하고싶은지도 모르겠고.. 심란하네요
-
근데 이건 정말 나만 알고 싶은건데..
-
- 기호만 치운 게 원래 답일 확률이 높다
-
심장 아프다 4
요즘 너무 무리했나 따흐흑
-
정보) 현재 난리난 테 무 x 네이버페이 대란 요약.jpg 0
https://xurl.es/4stnb
-
봇이지 뭐
-
국수영탐 공부량을 0.5/2/0.5/5 로해서할거임 국어점수는 걍 내 운명에 맡길수밖에없음
-
청정한옯생을살아야지
-
안녕히 주무세요 4
양치햇습니다 5시 알람 맞춰두고 자러갑니다 ㅂㅂ
-
점공 좀 그만봐야하는데 166명 선발, 595명 지원에 점공 328명 중 205등임...
-
현재 선택지가 2개임 27
1.사탐하기 장점: 공부량 적음, 안정적인 백분위 확보 가능 단점: 사탐 선택시...
-
님들은 애인이 12
오티 새터 가면 불안할 거 같음요?
-
질문받을분없나요 38
궁금한거있으면하게
-
잘자요 3
내꿈꿔줄래? 옹?
-
연구실 찾아가면 안됨?
-
사탐런이란? 0
[사탐 the tactics] 1.미련한 짓을 하지 않는다. 2.화학을 선택하지...
A에서 선분 BC에 수선을 긋고 점D에서 마찬가지로 선분 BC에 수선을 그으면 정확히 중점에서 만납니다
그정도 보조선이면 직관적으로 바로 오실겁니다
안오신다면 위에 그린 보조선을 사용해 삼수선정리를 이용한 작도를 하시면 바로 보이실겁니다
오 옵니다!!
사실 더 팁을 드리자면 평면ADH는 저거를 정확히 반띵하니까 ABD랑 ADC이루는 각 찾고 절반하시면 됩니다
세타 말씀하시는건가여!?
잘 생각해보시면
대칭인것은 이제 이해하셨을것이니까
정확히 대칭의 중심을 기준으로 각도가 갈리니까요
반띵만 해주시면 됩니다
아 D에서 내린 수선의 발이 수직 이등분선이니까 각도 이등분 해줘서 그런가여!?
네 정확히 각도도 반띵해주죠
오오옹!! 역시 갓에피... 이과똥은 똥송똥송하고 웁니다 8_8
감사합니다 !
A의 수선의 발을 A'이라고 해보죠. 선분 BC의 중점을 M이라고 두면 AM과 BC가 수직이고, AA'은 평면에 내린 수선의 발이므로 삼수선의 정리에 따라 A'M은 BC와 수직입니다.
옹 그러네용 감사합니다!
ABC는 정삼각형이므로 A에서 BCD와의 교선인 BC에 수선을 내리면 중심에 감
BCD는 이등변삼각형이므로 ~ 중심에 감
평면 완성
각각 삼각형 삼수선으로 하는거 인가요?
아 질문을 잘못봤네요 어쨌든 삼수선을 쓰긴 쓰게 됨
넹 이해됬어요! 감사해용
삼각형 abc가 정삼각형이라 a에서 bc로의 수선이 m으로 떨어지고 삼각형 bcd도 직각이등변이라 d의 수선이 m으로 떨어지죠 그리고 m에서 다시 bc에 수직이되게 선을 그으면 삼수선정ㅇ리로 a와 d의 평면으로의 수선이 m을 지나가는 직선위에 떨어집니다
열심히적었는데 꼴지네 ㅠ
음 그러면 H랑 A에서 떨어뜨린 수선의발을 H'이라 했을때
AD가 선분으로 되어있으니까 수선의 발을 떨어뜨린 점들을 이은 선분도 직선이 되고 MH가 BC에 수직이고
DH'이 BC에 수직이니까 HH'이 M을 지난다 인가요!?
BC의 중점을 M이라고 합시다.
삼각형 ABC가 정삼각형이므로 선분 AM과 선분 BC는 수직입니다.
또 삼각형 DBC가 이등변삼각형이므로 선분 DM과 선분 BC는 수직입니다.
점 A에서 평면 알파에 내린 수선의 발을 A'
점 D에서 평면 알파에 내린 수선의 발을 D'이라고 하면
삼수선의 정리에 의해
선분 A'M과 선분 BC가 수직이고
선분 D'M과 선분 BC가 수직입니다.
선분 A'M과 선분 D'M은 한 직선 A'D'위에 있으므로 직선 A'D'은 선분 BC의 중점 M을 지납니다.
윗분들 말씀대로 하니까 이해가 갔는데 이제 세타 구하는게 문제네요 ㅠㅠ
이거 어디서 본것같은데 어디문제예요??
해모파 0회영!
답 80인가요??
제발 맞는지아닌지만알려즈세요ㅠㅠ알고싶어요
저는 180 나왔는뎅... ㅠ 제가 틀릴듯 ㅠ
답은 아직 안봤어요!
이따 보시면 알려주시면 감사하겠습니다
답 하건에 있어여 ㅠㅠ 내일 저녀겡 가는데 ㅠ 죄송 ㅠ
tan세타/2가 저는 루트3 나왔는뎅 ㅠ
전 루트3분의 2나왔는데ㅠ
저는 라비아스님 말대로 풀어봤는뎅 ㅜㅜ
흠... 저위에 라비아스님말에 양쪽날개가 이루는각을 반띵하면 구하는각이 나온다는게 근거가있나요?
다른각이나올수있지않을까요
답뭐였나요? 너무뒷북인가..?