[JYJ칼럼] 6월테제③ : 미분법이 강화된다① 역함수
벌써 세번째 칼럼입니다.
타이틀은 "미분법이 강화된다" 이고 그중 역함수의 미분법입니다.
제가 요즘 케치프레이즈처럼 외치고 다니는 말이 바로
"미분계수의 시대는 가고, 미분법의 시대가 왔다"
입니다. 출제범위의 성격에 따라 문제의 구성방식이 달라지리라는 예상입니다만
그렇다고 해도 미분의 정의에서부터 그래프의 활용에 이르기까지
미분이라는 전체 단윈에 대한 체계적 이해는 필수입니다.
다만, 무슨 일이든 디테일한 변화가 생각보다 우리에게 미치는 영향이
매우 클 때가 많으므로 함수나 관계를 유도하여 미분계수를 계산해내는
미분법 연습을 충실히 해 두는 계기가 되시면 좋겠습니다.
2016.05.13. 장영진 드림
*본 컬럼은 DESKTOP환경에 최적화 되었습니다.
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8371471
①:1테제> http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8380565
②:2테제> http://orbi.kr/0008400498
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
궁금하네 난항상 페이커 우승횟수만큼줌
-
언매 공부법 0
평가원 언매 항상 0-3틀인데요, 언매는 2학년 내신 때만 하고 지금까지 쭉...
-
김승리 듣고있었는데, 지금 며칠 안 남은 상태에서 수특수완 보는건 불가능 할 것...
-
무조건 곡예사인게 조광일이 요즘 유튜브에서 안 보이잖음ㅇㅇ
-
진짜비염존나싫다 0
일부러 룸메 잘때들어왓더니 콧구멍으로 피리불면서 자 난어케자노..
-
적중고트였는데
-
소설책이나 한 권 더 살걸
-
벌목정정이랬거니 아람도리 큰솔이 베혀짐즉도 하이 골이 울어 메아리 소리 쩌르렁...
-
얼버기 0
레전드얼버기 어제일찍자서일찍일어남
-
이거 못고치나
-
관동별곡 유씨삼대록 옥린몽 세개중에 하나는 나올려나 2
문학중에 이거 3개만 안했는데 일어나서라도 할까 ㅅㅂ
-
자살 마렵네 0
여간 일도 아니지만
-
흠
-
옛날에 오르비에서 강의 하셨는데 지금은 어디서 강의하시는지 아시나요..
-
어릴때부터 꿈이었던 교대 입학하고 실습 가보니 적성에도 맞는 것 같고, 입결이야...
-
평가원보다 어려운데 정상인가요? 어려운3점부터 막히거나 못푸는데 정상인가요?...
-
이제 수능이 D-2밖에 남지 않았습니다. 이에 수능을 많이 경험한 저의 수능날...
-
아존나춥다 0
어차피 못잘거 공부라도 하려고 안들어갓는데 걍 통금풀리는시간만기다리는사람됨
-
컴팩트한 기출 1
1월 전까지 수1 기출을 한바퀴 돌리려 하는데 컴팩트한 인강강사 기출 뭐가있나요..?
-
작년말고 28번은 할만함? 26,27,29,30번은 4등급기준 어느정도임
-
아님 안 붙이고 수험표 뒤에 벅벅 써도되는건가요? 수험표 뒤에 쓰는 것도 검사받아요?
-
오늘 2시간만 자고 내일부터 10시에 자는 거 어케 생각함?
-
화이트헤드 나올지는 모르겠는데 나오면 헤겔 시즌2가 될만한 잠재성이 있어서 좀 무섭네요..
-
내년 상반기에 헌급방 지정 박고 입대할거같은데 군수 할만 하나요? 그리고 군수한다면...
-
11 12 1
주차장에서 담배 피는데 뒤에서 어느 집의 아버지와 꼬맹이 딸 둘이 얘기하며 오는...
-
채택완
-
04들아 올해 가자
-
뭔가 까마득한 느낌임. 내 학창시절을 지배했던 15개정교육과정도 이제 정말 끝물이구나.
-
첨에 강민철 독서 문학 둘 다 들었는데 독서는 잘 모르겠고 문학은 되게 유용했어요!...
-
어떻게 해야 잘할까요.. 함수~순열조합이 시험범위인데 함수는 걱정없는데 순열조합은...
-
https://youtu.be/RYHOoAZSVUM 영어 듣기 인트로 브금......
-
긴장되겠다 2
람쥐
-
장수생은 대학 가면 동아리나 미팅도 못한다는 이야기가 있던데 20
이거 진짠가요
-
전개 잘 되다가 결말이 좀 이상한데 잘못 읽은줄 ㄷㄷ
-
오야스미 2
캬루!
-
어삼쉬사나 준킬러 같은거
-
자꾸 저한테 생명과학 찍특을 판매해달라는 글이 많은데요, 최소한 올해는 찍특을...
-
사만다 시즌3랑 파이널 44~47 적중예감 42~45 떳는데 수능 때 2는 뜰 수 잇겟죠?………ㅠ
-
낼모레 수능인데 한파는 커녕 낮에는 걸으면 땀나더라… 라떼는 수능날 패딩입고 입구...
-
포부 적고가라 못 할 거 뭐 있 냐
-
개념도 좀 잘 훑어주는 그런 ..
-
개씨발
-
수능 끝나면 막상 수능 끝난 것이 실감이 안 나고, 막상 놀려고 하면 뭐 하고...
-
걍 치러가야지 마지막까지 힘냅시다
-
로맨틱코미디론 8
정통 로맨스 말고 로맨틱코미디는 단행본 기준 10-15화 내외로 끝내야 한다 그래야...
-
수능때 다가오니까 왜이렇게 눈물이 날거같지.. 다들 진짜 잘봐서 성불했음 좋겠다
-
병신 0
내가 니까짓거 만나려고 이렇게 코르셋 조이고 사는줄 아냐 양심이 있으면 반의...
-
소요 95분 작년에 사두고 못 푼 거 아까워서 푸는 중 #13 유일하게 못 풂,...
-
전반적인 기조가 작년 3월부터 이상했습니다. 현역들만 쳤지만 1.98...
작년 수능 21번은
역함수의 미분법이라기 보단
곱의 미분법이 어울릴듯
역함수라는 발상자체가 어려웠던 문제..
저도 현장에서 역함수라고 생각도 못하고 그냥 음함수미분으로 했는데
끝나고보니 많은사람이 역함수로 풀었더라구요..놀랐음
맞습니다. 풀이과정 자체는 음함수 미분법이 더 간결합니다.
수능 21번의 f(t), g(t)와 같이 정의되지만 음함수 미분법으로 가면
더 돌아가야 하는 경우도 있기 때문에 역함수 미분법으로도
꼭 이해두시길 권합니다.
탑재해드린 23번은 그런 의도의 변형문제입니다.
칼럼감사합니다~~ 문제들 다 좋은거같아요...나오면 좋겠습니다 ㅠㅠ ㅎㅎ
문제까지 꼼꼼히 보셨다니 기쁘네요. 눈에 보이고 할 수 있는 일부터 하다 보면 좋은 결과들이 나오겠지요. 건투를 빌어요.
선생님 오늘 메가스터디 들어갔다가 맛보기 강의에 지금 칼럼의 문제들 해설이 있네요!! 정말 감사합니다ㅠ ㅠ ㅠ 조금 고민이 있던 문제가 있었는데 바로 해결됬습니다
감사합니다!!
도움이되었다니 기뻐요^^
문제들 정말 멋집니다. 대칭이동 해서 다시 그리지않고 y->x방향으로 그래프 자체로 바로 볼수있게 훈련시키는 문항들과 , 특히 20번 문제는 g''을 찾을때 보통 g'은 f'의 역수라는 기하학적 의미까지만 알고넘어가는데 "항등식"을 통해서 풀줄도 알아야한다는 칼럼내용을 토대로 g(f(x))=x에서부터 g''을 찾아냈네요 23번도 tan 역함수 (lnt)로 표현하는게 관건인듯하고 특히나 20번 문제는 정말 신선하네요 이 문항을 풀고나니 매개변수로 표현된 함수의 이계도함수도 건드리면 변별력이 상당하지않을까 하는 생각이 듭니다. 보통 dx/dt /dy/dt 까지만 알고 넘어가니까요 앞으로의 칼럼내용들도 기대되고 강의들도 기대됩니다
문제들의 구성을 저보다 더 명쾌하게 꿰뚫으셨네요. 말씀하신 매개변수표현의 이계도함수도 학생들의 약점입니다만 이번 6월테제엔 싣지 못했네요. 관심있게 지켜봐주셔서 감사하구요. 올한해 입시 승리로 이끌어가길 기원하겠습니다. 화이팅.
좋은글 감사합니다 문제도 잘풀고갑니다
도움되셨으면 좋겠네요. 앞으로도 많은 관심 부탁드립니다.
정말 명쾌한 해설 감사드립니다!!
많이 배우고 갑니다. 고맙습니다
해설까지 보신거 같아 더 좋네요. 남은 칼럼도 열심히 봐주세요. 감사해요
선생님 인강 잘듯고 있습니다ㅠㅠ
감사해요^^