미적분1 자작문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 풀지 말고 기출 볼까요. 멘탈 관리 차원에서 4회 5회는 둘다 91 91...
-
수학황 아닌데 왜들어옴? 너가 수학황이라 생각함? ㅋ.
-
사회적으로 사용 가능한 자원이 제한되어 있기에 사회불평등 현상이 불가피하게...
-
[2025수능예측] CH(3) EBS 수2 연계가능 문항 (압축&압축) 0
월요일 수능이 가까워지고 있네요! 긍정적인 자세 유지하며 잘 준비해봅시다!!!...
-
지금시기에 0
교육청 모고가 의미가 잇음? 이미 총정리과제랑 김승모 푸는데 샘이 계속 교육청 풀라는데ㅜ
-
저는 예체능 입시를 준비하고 있는데여 제가 지망하는 학교가 1차는 실기 100퍼이고...
-
모썩철썩
-
수능 현장에서 보실 예열 자료입니다. 저, 한대산 영어는 그대들의 수능 대박을...
-
도형 나오면 항상 주변 도형 관찰해서 공통 넓이 잡고 빼왔었는데 이게 좀 안좋은...
-
아 진짜 미쳤나 0
이감 엣지 2회차 풀다가 졸아버림
-
개짜증나네..
-
앞자리 7로 마무리 뭐지다노 ㄹㅇ...
-
지문마다 거의 2개씩 박았네 수능날 법•경제 ㄹㅇ 개박을거같은데
-
반 애들이야 최저 낮거나 하면 조금 시끄러울 수 있다고는 생각하는데 공부 하고...
-
'인간은 다른 모든 생명체 보다 본질적으로 우월하지 않다.' 라고 했을때 싱어가...
-
말로만 수학 5등급이라는데 (정확한 수학실력은 모름) 수학 상이랑 하도 하라는게...
-
71점 맞았는데 독서론 -1 독서 -5 문학 -6 언매 -1 .. 수능때 이거하고...
-
수능 하루전에 더데유데 한회차가 남았는데 그걸풀까요? 아니면 기출을 다시 좀...
-
올해 6,9 평 제시문을 유심하게 봐라 2023학년도 수능 2번 문제 “명예를...
-
세개 다 어려웠나요 아님 문학 언매만? 화작은 몰라서.. 현장에서 어떻게 읽었었는지...
-
가나형 없어지고나서 통합수능? 이후로 생윤 등급컷은 어떤 편인가요 1컷이 50인적이...
-
독립시행이라 다시봐도 의미없으려나….
-
다 던지고 자연 속에 파묻혀서 살고 싶다
-
21시에 제가 작년에 가져갔던 예열 지문들 올려드릴게요 0
국어/수학/영어 올려드릴게요~ 월요일 파이팅~!~!~!~!~
-
가채점표로 부모님이 채점하시게 하기..
-
보통 뭐가 더 어렵죠
-
뭐 푸는거 추천하시나요?
-
이런 나 제법 깔끔해요
-
위 그림처럼, 원래는 역함수가 없는데 강제로 y=x 대칭시킨 도형을 적분할 때...
-
1-2 79점 2컷이네...언매 8점 날린게 크다
-
그냥 나무위키나 볼까 ㅋㅋㅋㅋ 뇌에 더 잘들어오는 느낌..
-
아ㅏㅏ c언어듣는중 과제 평가 받는 중
-
다수의 정의감이 지배하는 사회는 무조건 민주주의 사회인가요? 아님그냥 적정수준의...
-
개념을 까먹은건가 평가원은 이렇게까지 안틀리는데
-
현역 국어 마지막 실모 2개 추천 부탁드립니다 형님들.. 1
첫수능 3일을 앞두고있는 어린양에게 투표 한번씩만 부탁드립니다ㅣ.....
-
못참겠다 1
야인시대 정주행 간드아악
-
올려드립니다. 예열지문의 경우 수능 당일 아침에 푸시는 걸 권해드리고, 그와 별개로...
-
죄송해요 전역하고 1년 더 할 것 같아요ㅠㅠㅠ
-
해줄 말이나..? 여러분 같으면 과외샘이 뭐 해주면 좋을 것 같나요 일단 수업은...
-
고백공격 할사람도 없음 ㅅ1ㅂ 경쟁자 제거용 고백공격 나도 해보고 싶다
-
바이섹슈얼 선언하고 나도 리트 칠 때 남녀 상관없이 고백 공격으로 상위권 표본제거해볼까.
-
퀄리티가 좀 안좋다는 평이 많아서 풀기 좀 꺼려지네요,특히 탐구 그래도 봐야할까요 ?
-
독서지문이 어려운편은 아니었지만 그렇다고 해도 전체적인 난이도가 1컷 94정도까지는...
-
사설 국어 등급 2
사설 1~2 진동하면 평가원 2는 안정으로 뜰까요?
-
설맞이 모의고사 0
쉬운편이에요?
-
어제 작수 국어 쳤는데 10
91점 (독서0틀 문학 3틀 언어1틀) 역대 커하 나와서 엄마한테 자랑했는데 작년에...
-
오직 수미잡
-
개어려운것같은데 맞나요? 문학 다맞긴 했는데 모호했던 문제 서너개를 감으로 풀어서...
-
이감 0
서버 관리좀 해라
-
점수에 연연햘 필요가 없을거 같은데 퀄리티 조절 실패하는 경우가 많아서
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..