미적분 자작문제
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과팅해보고싶다 경북대 과팅은 너무 지루했어
-
최종업뎃 45등실시간 38등둘다 참고하시나여
-
냥냥에리카냥냥 0
냥냥에리카짱냥냥
-
속보) ㅈㄴㅂㅇㅇ 냥기계 붙으면 오망꼬댄스 추겠다함 3
방금 나한테 쪽지로 알려줌 그 춤 추는거 찍어서 여기다가 올리겠대
-
이거 붙으면 9
오르비 메인글 가고 신화를 쓸 수 있나. 딱 4명만 어떻게 해버리면 붙을거같은데
-
이글재밋네요 2
https://orbi.kr/00010082981 ㅋㅋㅋ
-
덕코가 많네 7
-
좋아 난 자겠어 7
외vs건 결과 나오면 깨워줘
-
우삼겹 콩나물 넣으면 존나 맛있음
-
동생이 이번에 수능을 봤는데 6모, 9모, 사설 모의고사 항상 국어 1~2등급...
-
그것만이 살길.
-
홍대는 이게 문제임 10
학교가 홍보에 전혀 관심이 없음 인스타 유튜브 다 방치 동국대맘 봐도 인스타 이쁘게...
-
서울대 6
진학사 점공 계속 최초합권이여서 1차는 그나마 안심하고 있었는데 지교 2.3:1에서...
-
점점 떨어져서 걱정되네
-
사실 엄청 심한정도는 아닌데 2학기 내신기간에 수2만 하다보니까 수1을 좀 많이...
-
제빵대 vs 무관대 벌써 근본잇음
-
옯서운 이야기 4
내가 어케 벌점이 0이지..
-
아래 글 보고 갑자기 해보고싶어졌어요
-
하아.. 늙기싫다
-
가나다 각각 5칸최초, 5칸최초, 5칸추합 이고 모집인원도 각각 60명, 30명,...
-
더 심해지면 심해졌지 덜하진 않을듯 빠르게 경북대를 손절할려는 이유
-
뻥임뇨
-
반쪽짜리 여기까지
-
아구창에다 내 핫도그 쑤셔넣고 싶음 ㄹㅇ..
-
문과가 부럽다 5
철학,사상,정치,법,경제 그런거 공부하니까 교양있어보임 난 소금물에 물 타면서 농도...
-
자기 말에 동조 안 해주는 사람= 다 외훌, 고로 자기 혼자만 외훌 얘기하므로...
-
졸업생은 정시에 내신이 어떻게 반영되나요? 정보 나와있는 곳이 있나요? 그냥...
-
친구가 본인 동네 편의점에서 알바하는데 숙취해소제 사가지고 갔다했음 ㅋㅋㅋㅋㅋ
-
그래그래 이게 오르비지 그리웠어
-
2칸 쓰신분 0
742 생각중인데 그냥 돈날리는건가요 7칸이 2지망이였고 4칸이 1지망
-
교육과정에 대한 고품격 토론
-
변동 심한데 저것도 보면서하시나요
-
외대한테 저렇게 할려나? 절대 안그럴거 같은데 외대 어문은 동홍 전자보다 낮을건데...
-
오늘 방송 못봤다고요;;
-
나군 둘중 뭘 쓰는게 더 안전하게 붙을거 같나요? 막판에 최초합 뜬거는 안쓰는게...
-
뽀뽀하고 끗내자
-
식물갤 홍보•• 7
이거 저임뇨•• 가끔 글쓰니까 많관부
-
투표로 해보자
-
ㄱㅁ 18
-
힘들때 쉬면서 산책하고 하원할때 산책하며 얘기하는게 힐링임 모르는거 물어보고
-
스피드 외건이거든.
-
진짜 싸우고 있네
-
보스웰리아 네글렉타라고 불리는 보스웰리아 속의 식물입니다 아로마 성분이 있어서...
-
조조됏내
-
나혼자 외훌이야기 하는거 자체가 이미 좌표방은 성립인거임. 외훌분들 정신차리세요....
-
이성계가 조선 만들때 건국대 햇다는거임 유익햇다면 덕코좀
-
7년간 우울증을 앓고 있고, 반수해서 25 수능 친 사람입니다. 혹여 제가...
-
지금 외대성적인데 이렇게까지 거론되는걸보니 기분이 좋네요.. 제전적대는 관심도...
-
고닉임?
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..