[박수칠] 미분계수와 함수 극한의 관계에 대하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
줄건줘 1
난 만점자 아니야
-
행복하자 2
행복하자.우리
-
그러니까 동덕여대를 갔지ㅋㅋㅋㅋㅋㅋㅋ 라고 하면......어쩔건데 니가 뭘 할 수...
-
저도 살면서 몇번 당한 이후로는 착하게는 못살아도 최소한 타인한테 절대 피해는 안주려고 노력하는중
-
이뻐서 찾아봤더니 경희대네 대 경 희 ㅋㅋㅋ
-
올해 수능봤으면 좃됐을뻔 중독성 미쳤네
-
중꺾마 1
-
이시점에서 투표) 수능 내일모레 보기 vs 수능 1년 미루기 4
당신의 선택은?
-
오늘도 파이팅 1
-
놀라운사실: 진짜임
-
얼버기 6
ㅇㅂㄱ
-
이걸로 쭉 봐볼까
-
물리 특상질뮨 2
광원에서 검출기까지 편도로 가는것만 생각했을때 빛방출-빛도착이 우주선 입장에서...
-
'망하면 재수하지 뭐' 멘탈 관리 goat
-
전 그래서 교실 밖으로 나와서 단팥빵 두개 머글거임
-
이거 좋은 징조인듯 문제가 이렇게 술술 풀릴 거라는 얘기니 완전 럭키비키젤렌스키
-
얼버기록 2일차 5
다들 화이팅 11/12 화
-
전 아님..
-
내가 허수라 그런걸수도 있는데 현역(23수능): ‘와 ㅅㅂ 올해 국어 진짜 제일...
-
나같은 의지박약은 집독재를 하면 안 된다
-
은 어떡하죠 남은 시간 동안 7시간 자나 (원래 적정량) 10시간 자나 큰 의미는...
-
밀리제 왤케 예쁘뇨
-
독서론어디감?
-
40분 간격이 말이 되냐 어쩔수없이 택시탐.....
-
ㅇㅇ 평가원이 10모도 연계하나
-
1. 현실에 존재하지 않는것이 있다 1이 참 2. 현실에 존재하지 않으면 마음속에...
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 2
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
수능 이틀남았는데 웰컴백 할인 ㅇㅈㄹㅋㅋㅋㅋㅋ 저 광고 센터에서도 좀 보이던데..
-
8시간 자니까 너무 개운하네요
-
한달만에 1등급은 뭐 그렇다 치는데 과탐 실모 고정 47 50 << 이게...
-
당신이 방금 전까지 있던 시간은 수능 응시 직후 오열하며 시간이 며칠만 더 있었다면...
-
계속 30점 중후반이네 아....
-
소용돌이쳐 어지럽다구
-
지금 열나고 7
몸살있으면 좀 쉬는게낫나요..? 전 학원가서 평소처럼 해야할것같은데 부모님은 쉬라고 하시네요..ㅜ
-
얼버기 4
오늘 하루도 최선을 다하자
-
할 수 이써 ㅠㅠㅜㅠㅠ
-
다시 외쳐보자 4
"어차피 내가 이겨"
-
수능 사전 준비는 다 끝난거죠?
-
ㄷㄷ드디어... 분명 3월에 들어갔는데 벌써 종강날이네
-
넌 내가 안궁금해 이대로도 충분해
-
ㄹㅈㄷ 얼버기 4
-
얼리벌레 기상 2
-
새르비 2
새벽르비 on 오늘 8시 퇴원이라 미리쓰는중
-
얼리버드 기상 2
학교로.....
-
올해 수능칠건 아니지만 지금 상황보면 독서문학언매 전부 22독서 24문학 24언매...
-
6-8~6-10 제재 알려주실 분 제발요 쪽지로 알려주세요ㅠㅠ 부탁드립니다
-
오늘은 베나구
-
궁금하네 난항상 페이커 우승횟수만큼줌
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^