생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기린들이 너무 귀엽더라구요 ㅎㅎ
-
베개옆에놓고 매일조금씩 들춰보는데 오늘안읽고자려니까 막 정신병걸릴것같음 이게다오르비때문이야
-
미치것네요 ㅜㅜㅠ 3개 다 떨어질까 무섭네요 아
-
갑자기 걱정됨 식물 싫어하는 사람들은 딱히 없겠죠..
-
. 0
신
-
이거먹고 잘듯
-
잠이 안오네 11
3시간밖에 못잤는데 이걸 더자 말아
-
목표 연고 높공~매디컬or계약 화미영물지 순 현역 6모 51 92 3 93 88...
-
코돈 파트 코돈은 걍 헬이고 다른 문제는 18수능 보니까 이 파트는 걍 문제가 ㅈㄴ 기네
-
갓생ㄱㄱ
-
그래서 내 정체를 머를 핑크여자듀 안팔리고있는건가
-
새벽 일과
-
고치기가 귀찮은거 공감가능?
-
근데 재르비들은 2
예전닉언급하면 산화당하나요
-
졸리다 1
자야되나
-
ㅇㅂㄱ 6
얼리버드기상
-
몬가 몬가네
-
자지푸딩 먹어보고싶음 10
그래서먹어보려고
-
게이 13
여기서 게이..?이신 분들은 컨셉이시겠죠?
-
기원 범준 투샷 2
-
해본적 없음
-
진짜 자러갔나보네
-
여르비 ㅇㅈ하셈
-
ㅇㅈ해보까 6
사실 안함
-
수학감안뒤졌네 2
좋아
-
야심한 밤 가슴살 인증 13
그것은 닭찌찌엿고연
-
ㅇㅈ 13
-
차마 누구 못 보여주겠음 개못생겼는데 맛은 괜찮네요 참치액 덕분인 듯
-
나두 ㅇㅈ 13
-
흐흐 공짜식물 왕창 챙겨드리기
-
인증을 멈춰 1
메인글에 저격당한다고 ㅜㅜ
-
ㄱㅁ 이 안 달리고 감탄함 ㅋㅋ
-
ㅇㅈ메타 돌았나요?
-
여목 연습중이라 목에 안좋은거 하기 싫음은 아니고 담배는 싫어하고 술은 안받음
-
수학전담과외(수업및 sns로 질답) 및 나머지 국영탐 조언,추천해주는거 애초에...
-
오랜만에 한달 전 사진을•• 지금은 길이 차이는 크게 없지만 숱을 많이 쳤어요
-
문풀배우고싶어용
-
@STUDY_FLOVER 공스타...
-
작년에 20명 뽑았을 때 추합 30명까지 돌았고 재작년 12명 뽑았을 때 추합...
-
여목 잘하고싶다 9
내목소리 ㅈ구려병
-
오랜만에 ㅇㅈ 6
근황
-
한달에 100버는 남자가 되고 싶다
-
물리 현역 수능 5등급 백분위 53 재수 06 4등급 백분위 74? 09 3등급...
-
키스젤리 앎? ㄹㅇ 그거랑 똑같음 ㅇㅇ….. ㅇㅇ… ㅇㅇ… 어어..음 ㄹㅇ일걸요아마
-
공스타맞팔구 5
캬캬
-
6일남았다 2
하루 깜짝 조기발표 안해주려나
-
와리 할사람? 0
댓 고고
-
행복tv
투과목 칼럼은 개추