6월 모의고사 준킬러 / 킬러 해설 (PDF 자료 첨부)
6모.pdf
Team BLANK 공통 + 미적분 교재링크: https://atom.ac/books/12412/
(구 버전 디자인입니다. 실제 출판된 교재의 내지 디자인은 보다 깔끔합니다.)
안녕하세요, Team BLANK입니다.
다들 6모 보시느라 정말 고생 많으셨습니다.
다들 좋은 성과가 있으셨길 바라고,
혹여나 이번 시험에서 좋은 결과를 얻지 못했더라도 9모 때까지 열심히 노력해서 (혹은 운이 없었다면, 운이 뒤따라줘서),
9월에는 꼭 좋은 성적 얻으시길 바라겠습니다.
먼저 핵심 문제들 몇 문제를 짚고 넘어가보겠습니다.
12번)
지수/로그함수에서 몇 가지 조건을 주고 주어진 점의 위치를 계산하는 문제입니다.
꾹 참고 계산으로 밀고 나가면 풀 수 있으나 식의 모양이 더럽고, 또 계산량이 만만치 않아 학생들이 이 풀이대로 밀고 나가는 것을 주저할 수도 있었습니다.
그래서 계산을 하기 싫어 대칭성을 활용한 풀이를 찾아본 학생들도 상당수 존재했을 겁니다.
대칭성을 활용한 멋진 풀이가 존재하긴 하지만, 실전에서 찾기는 어려웠을 겁니다.
지수 / 로그함수 문제는 크게
1. 계산으로 밀고 나가는 풀이와,
2. 대칭성이나 기하적 특징을 활용한 풀이
가 있습니다.
두 풀이 모두 적용 가능한 문제들이 있고요.
일반적으로 후자가 더 아름답고 빠르게 풀리긴 하지만,
시험장에서 후자만 밀고 나가다간 풀이가 눈에 안 보일 때 막힐 수 있습니다.
따라서, 이러한 대칭성이 보이지 않는다면, 혹은 보이더라도 활용할 수 없다면,
언제든지 ‘꾹 참고’ 계산으로 밀고 나가서 풀 생각을 하고 계셔야 합니다.
저희가 가져야 되는 태도는 문제를 평가하기보단 얻어갈 걸 얻어가는 태도입니다.
계산으로만 푼 학생은 대칭성을 활용한 풀이를 고민해 보면서 습득하고,
계산이 싫어서 대칭성을 활용한 풀이만 쓴 학생은 계산으로 밀고 나가면서 인내심을 길러 보는 것을 추천드립니다.
22년도 수능 13번도 이와 비슷하게 계산을 활용한 풀이와 기하적인 성질을 활용한 풀이가 존재합니다.
이 문제도 계산 풀이 / 기하적 풀이 두 방식으로 풀어 보시는 것을 권합니다.
15번)
전형적인 ‘비주얼만 괴랄한’ 위장 킬러 문제입니다.
절대 다수의 중상위권 이하 학생들은 문제를 보고 이렇게 생각할 겁니다.
“구간별로 나누어진 함수에, 거기에 또 절댓값 덕지덕지 붙어있는 식을 곱하고, 그걸 적분한다고? 난 못해….”
하지만 하나하나 뜯어보면 큰 변별 요소가 없음을 알 수 있습니다.
구간별로 나누어진 함수이나, 실수 전체에서 미분가능하고 항상 증가한다는 해석하기 쉬우면서도 매우 강한 조건을 (가)에서 걸어놓았습니다.
절댓값 자체는 좀 무섭게 생겼으나, |A| + A, |A| -A 꼴의 형태이므로 범위에 따라 간단하게 표현되는 함수임을 알 수 있습니다.
적분도 좀 무서울 수 있지만, 결국 피적분함수가 전체 적분식의 도함수 역할을 한다는 것을 인지하고 그래프를 그려 나가면 됩니다.
모두 기존의 기출에서 나온 아이디어입니
최상위권 학생들이 가장 좋아하는 문제이죠.
자주 나온 소재고, 본인들만 쉬운 문제이니까.
구간을 고려하면서 적분함수의 증감을 따지는 비슷한 기출로는
’1809나30, 1909나21’가 있습니다.
한 번씩 풀어 보시길 권합니다.
20번)
이 문제를 보고 신선함을 느꼈을 수도 있을 것 같습니다.
집합 표현을 사용하기도 하고, 학생들 보고 직접 노가다를 뛰라고 말하는 문제죠.
물론 이런 류의 문제가 불편하게 느껴지는 학생들도 있을 겁니다.
실수할 가능성도 높고, 시간도 약간 잡아먹고…
하지만 약간의 노가다는 평가원에서 자주 내오던 유구한 전통이죠.
대표적으로 수열 단원이 있고요.
시험장에 들어갈 때 이런 문제 한두 개쯤은 만날 각오는 하셔야 됩니다.
단원은 다르지만, 22예시30이나 옛 격자점 기출을 풀어 보신 분들은
이 정도 노가다는 웃으면서 하실 수 있을 겁니다.
a+b의 범위도 2부터 10까지밖에 없으니,
최대는 10에서 내려보면서 따져보고
최소는 2에서부터 올려보면서 따지면 답에 도달할 수 있었을 겁니다.
22번)
기존 패턴을 깨고, 22번에 수열 문제가 출제되었습니다.
하지만 풀이 방법은 기존에 나오던 것과 다를 게 없습니다.
경우를 쪼개 가면서 역추적으로 문제를 풀어 나가는 것이죠.
(물론 순방향으로도 풀 수 있습니다.)
경우의 수도 4가지밖에 되지 않는 만큼, 꼼꼼하게 풀었다면 맞췄을 문제입니다.
계산 실수를 줄이기 위한 약간의 팁을 드리자면 역추적으로 수열 문제를 풀고 난 다음, 정방향으로 다시 대입해 보는 겁니다.
29번)
개인적으로 이번 모의고사에서 가장 마음에 드는 문제입니다.
구간별로 정의된 함수를 줬고, 미분가능 조건을 준 다음, 미지수를 총 3개 구하라는 문제입니다.
처음에 조건이 부족해서 약간 당황했을 겁니다.
실제로는 f`(x)의 분자가 완전제곱식으로 나오는 특수한 상황이었습니다.
이를 직접 발견하거나,
혹은 관계식이 초월함수(log)와 다항함수로 이루어져 있기에,
“log항들이 소거되는 특수한 상황이겠구나”를 인지한 채로 접근해야
문제를 풀 수 있었죠.
하지만 이걸 발견한 학생들은 단순히 ‘지능이 높아서’ 이것을 발견한 것일까요?
아닙니다.
대부분 “조건이 하나 부족하니까 뭔가 되게 특별한 상황이겠다.”라는
의심으로부터 출발했을 겁니다.
이 직관이 어디서 생겨났을까요?
‘내가 할 수 있는 것’을 명확히 알고 있어야 합니다.
고등수학 밖에 배우지 않은 우리는, 저 식에서 뽑아낼 수 있는 게 ‘연속이다’라는 식과 ‘미분계수가 연속하다’라는 식밖에 없다는 것을 알아야 합니다.
저희가 할 수 있는 게 뭐 더 없어요.
그렇다면 나머지 조건은 ‘매우 특수한 상황’에서 기인되어야 하죠.
이 생각으로부터 숨겨진 조건이 있을 것이라는 의심이 시작되는 겁니다.
답은 결국 나와야 하니깐요.
“나는 수능 수학 전 범위 개념을 알고 있고, 결국 이 안에서 모든 게 풀릴 거야.”라는 믿음이 문제를 풀 때 생각을 이끌어 주는 원동력이 됩니다.
총평을 하자면,
소수 최상위권과 그 외 학생들 간 격차가 엄청 나타났을 시험이었습니다.
대부분 문제들은 기존 기출의 발상으로 해결되는 문제들이었습니다.
기존에 해오던 방식이 막힐 때, 스스로 풀이 과정을 예상하고 설정한 다음 그대로 밀고 나가는 능력을 몇 문제에서 요구했습니다.
다만 이러한 능력은 평가원이 수학 영역에서 항상 요구한 능력치이므로,
스스로 풀이의 스토리를 짜고 세워 나가는 훈련을 자주 하셔야만 합니다.
난이도만 보면 23수능과 비슷한 정도인 것 같습니다.
기출을 3 ~ 4회 이상 여러 번 풀어 볼 필요는 없지만,
각 기출 문제들이 가지는 교훈과 발상을 이야기처럼 머릿속에 넣고 있는 것은 굉장히 중요합니다.
개인적으로 1회독은 강사의 도움을 받아서, 그리고 다시 한 번 더 본인이 직접 스스로 한번 더 교훈과 발상을 정리하면서 풀어 보면 충분하다고 생각합니다.
달라진 건 없습니다.
개념 / 기출이 부족한 학생들은 개념 / 기출 공부에 계속 충실하면 됩니다.
개념 / 기출이 끝난 학생들은 N제로 수많은 문제를 풀어 보면서 다양한 상황을 대비하면 되고요.
시간 관리에 문제를 느낀 학생들은 실모 양치기를 통해 시험지 운영법을 배워 보는 것이 도움될 겁니다.
여러분들의 성공적인 25수능을 기원합니다. 화이팅.
Team BLANK 올림
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1. 잠깐이라도 충분히 자며 에너지 충전하기 공부 슬럼프에 빠진 학생들은 지금까지...
-
바로 75점 떠버리네;;;
-
오느레 급씩 0
히히.. 마시게따
-
나만 어려웟나 ..
-
오바임뇨?? 걍 기출 더 보는게 낫나..
-
심찬우 나와서 노래부르고 춤 춤?
-
근처에서 혼밥 하실거임? 아님 콘섵만 보고가나
-
생글 첫강듣고 독재에서 숨죽여 울었던게 어끄제같은대 벌써 수능이 열손가락으로...
-
성적인 묘사도 많고 내용도 무겁고
-
문자가 안오는걸 보니 떨어진 것 같네요 그래도 멘탈은 안털렸으니까 더더욱 열심히하자 끝까지 파이팅
-
혜윰 시즌1 1
이거..답이 1번이라늨데 왜죠? ㅜ 하향식이 틀린거아닌거 아님?? 당연히...
-
메모하면서 지문 푸나요 아니면 밑줄 치면서 푸나요 아니면 속발음하면서 푸나요
-
총정리과제 7 개밀렸는데 유기하고 8 집중적으로 파도 될까요? 아니면 무리해서라도...
-
EBS 만점마무리 봉투 모고 팩트로 어느정도 난이도임? 1
이번 종로도 87이고 계속 사설에서 2 후반에 서식중인데 이건 하나밖에 안틀렸더라...
-
오늘은 공부 슬럼프와 관련된 글을 한 번 써볼까합니다. 슬럼프란 무엇일까요? 보통...
-
큰거 한번 싸면 보통 2~3일뒤에 신호가 오는데 수능 전전날 변비약 먹고 수능 전날...
-
요새 사회 쉽게 나와서 약간 중요성이 떨어진 감도 있는데 이감 풀어보신 분들 사회는...
-
예전에 믿문이 되게 별로였었고 오르비 여론도 썩 좋은편은 아니라 안듣고있었는데......
-
국수영 점수 왔다갔다 거리는게 너무 불안하고 슬픔
-
국어 독서론까지 다 풀면 배가 ㅈㄴ 아프지 에반데 긴장되는건 아닌데
-
저는 물투화투 선택했습니다
-
연계 공부 1도 안했는데 괜찮나요 현대시2번 읽고 고전소설 인물관계도만 외우고...
-
뭐 살까요? 막판 하나 풀려는데
-
문학 어려워용 현대시에서만 3개틀림...
-
쉽지 않아요. 시간 재니깐 67분 걸림 (ㅈ됨) 여기서는 그냥 스포니깐 넘어가실...
-
이정재, 래몽래인 경영권 분쟁에서 승리…정우성과 이사회 입성 1
임시주총서 이정재 측 안건 모두 가결 드라마 재벌집 막내아들, 성균관스캔들 등의...
-
나만그래?
-
아침에일어나서 10시에한번 점심먹고 바로 그 이후론 ㄱㅊ음 ㅋㅋ 재수생 되니 맞추기쉽네
-
그날이 단 1주일 남았구나
-
월훈 문의당기 그 지문인데 분명히 상반기에 강의 들었던거같은데 어디에서 다룬건지...
-
그냥 풀어보는게 나을까요? 직전이라 멘탈에 이상이 생길수 있을 것 같아서요..
-
내신은 8학군 2점대 극초반이고 정시파이턴데 설의 설치 같은 곳은 세특을 따로...
-
수특은 KBS듣는중인데 수완 어카지 책 사놨는데 못풀거같음.... 어카지 수특도 다 안끝났는데 ㄹㅇ
-
실모안치고 일희일비중 막 자신감 개떨어졌다가 자신감 갑자기 생기고 그럼 ㅋㅋㅋ
-
설맞이 풀어보고 싶은데 지금 시기에 푸는거 에바임? 2
설맞이 아카이브나 모의고사 풀어보고 싶은데 지금 사서 풀어도 안늦을까요?
-
사문 질문 2
지속적인 경기 불황으로 일자리가 감소하자 독거노인의 생계형 범죄가 늘어나는 경우는...
-
2합4 영어사문 0
최저 맞춰야하는데 지금 사문 2 영어 2 생각하고 있어요.. 영어가 안정 1은 항상...
-
국어 실모 0
이감6-10 key모 상상 9,10 네 개있는데 오늘 키모 풀고 두 개 더 풀...
-
뭐들을까요
-
진짜 국밥에 당면만 있는 순대를 넣나요? 그 쫜득거리는
-
무슨강의 몇강인지좀알려주세여ㅠ
-
5000부 판매돌파 지구과학 30분의기적 파이널 총정리집을 소개합니다. (현재...
-
멱집합 이진수 개어려운데.. 이해가 안 됨
-
고전소설 비연계 고전시가 비연계 극 연계 때리는게? 이감의 깊은 뜻인가
-
메가 대성 2
둘 다 사는거 ㄱㅊ은 선택이겠죠 한지 사문인데 이기상이 너무 듣고싶어요 원래 대성만 하는데
-
긴장되는거 쫄리는거 전혀 없고 그냥 결과가 어떻든 빨리 끝났으면 좋겠음 당장...
ㄹㅈㄷ
내일 블랭크 기출 책 온답니다 ㅎㅎ 기대가 되네요 내일 바로 오자마자 열심히 공뷰 할게요 감사함니다~ ^^