[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올리기 가능함요? 지금 780점정도인데 방학때까지 900만들 수 있을까요
-
왜인지는 모르겠으나 함수가 확정이 안됩니다ㅠㅠ F1=F0 / 0과 1에서 변곡점 /...
-
아 테니스 0
치고싶드아ㅏㅏ
-
친구를 만들어보자
-
난 초등학생때부터 배구를 하고싶었어ㅓ
-
연금소설 끝판왕 4
그리고 이를 따라가는...
-
생윤 처음 들었는데 너무 중구난방이고 수업이 이해가 안되는데 노베라서 그런가요...
-
으흐흐 1
이 웃음 소리 누가 만들음 ㅈㄴ 맘에 든다
-
레어사세요 1
-
너무좋아 눈호강
-
나만 이럼? 1
10시 36분쯤 되면
-
남고에서 정시를 준비하다보니 나도 변질됨
-
https://youtu.be/kBBb56rwNbI?si=DDnpZ24zfUkg79M...
-
이 수 ㅁㅌㅊ? 4
-
https://novelpia.com/novel/191608
-
공통시절 문제들은 어떻게든 당위적이게 풀어줄수 있는데 1
가형기출은 걍 모르면 외워 말곤 할말이 없넹
-
이제는 직장인이 되어버린 친구들...
-
한 목숨만 더 주면 안 됨? 제발요
-
평범한 겜판으로 시작해서 선협물로 1차 드리프트, 결말에서 ㄹㅇ 판타지로 2차...
-
윤사 처음이라 잡아놓기는 해야하는데…
-
롤체 문 열어 쾅쾅 아 오늘 미장이랑 라이엇 둘 다 뒤졌네 아오
-
와 이건 혁명적이다..
-
휴먼벤치마크 3
https://humanbenchmark.com/ 이거 위에 나오는 스탯 최고기록이...
-
못하는거임…..?
-
외대가고싶다 0
니엉덩이더러워를 달고싶으다...
-
드래곤중에서도 최강의 투명드래곤이 울부짓었다투명드래곤은 졸라짱쎄서 드래곤중에서...
-
그런 것이다
-
이전 버전의 허접했던 임시 표지 대신 정식으로 표지를 새로 만들었습니다. 나름...
-
내잘못이긴한데슬푸다.
-
오뿌이들 안녕하세요 15
-
그저... "빛"
-
가형기출들보면 4
확실히 교수들은 미친놈들같아
-
최고의 반전소설 8
넵
-
엄마가 돈에 집착이 너무 심한 타입인데 (원래 그랬고 외할머니 유산갖고 자식들끼리...
-
집으로 돌아가고싶어
-
난 만취해도 맞춤법 지키는데
-
무물보 ㄱㄱ 10
아무 잘문이나 ㄱㅊ
-
방금 20점 나와서 현타 엄청옴 나름 수학 재능 있는지알았는데 이런 돌대가리였으면...
-
https://orbi.kr/00012187583 goat
-
여기 경기도인데
-
나의 투쟁
-
ㅇㅇ
-
아는 여자애 수시로 동아대 갔다던디 중학교때 공부 좀 치던애라 궁금하네요
-
당당히 내 꿈들을 보여줘야해
-
홍대 129.1 0
홍대 건설환경공학과 추합 가능할까요?
-
24수능 백분위 100 25수능 백분위 99 암산테스트 16점 ㅋㅋ
-
국가대표 손인욱 2
국가대표는... 외로운 거니까
-
글자가 너무 많아요
-
뒤를 돌아보지 않아
감사합니다 도움많이됏급니다