무브
오르비
아톰
내 태그 설정
외고지만 이과 [1275189] · MS 2023 (수정됨) · 쪽지
게시글 주소: https://1ff8ipsi.orbi.kr/00067779391
개인적으로 재밌는 문제입니다. 야무지게 풀리는 것 같은데 한번 풀어주시면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
시간이 시간인지라.....머리가 안 돌아가서 오늘은 포기......
ㅋㅋㅋㅋ 시간 나실 때 풀어주시면 감사하겠습니다
넵....님 대단해요...모의고사 혼자 만드려니까 죽겠던데
ㅋㅋㅋ괜찮으면 제 거 검토 부탁드려도 되나 싶네요
수시생이라 슬프네요 ㅠ 1학기만 끝나면 최저 맞춰야하니 공부하는겸 풀어드릴 수도 있을 것 같습니다
g(0)=0 아닌가요 그냥..?
아닙니다 조금만 더 고민을 해보시죠
첫번째 조건 양변에 limx->0 f(x) 곱하면 그냥 limx->0 g(x)=0 나오고 g(x) 연속이니까 g(0)=0인데 뭐가 잘못됐을까요..?
아 맞네요 죄송합니다 문제 수정해드렸습니다 다시 풀어주시면 감사하겠습니다
엥 님 몇 학년임?
고 3입니다
06임? 와 내가 05인데....대단하네요....멋있는 동생
최대값 갖는 g(x)=x^2+4
조건을 저렇게 바꾸니까 f(x)랑 g(x)가 같아버리네요 의도한건 g(x)가 일차함순데 혹시 g(x) 일차함수인 경우도 한번 구해보실래요..? 바뀐 조건으로 푸시면 되실 것 같습니다
근데 g(x)가 일차면 모든 실수 x에서 g(x)가 f(0)보다 작거나 같은게 되나요? 일차함수 치역이 모든 실수인데
아하.. 급하게 만들다 보니까 오류가 너무 많네요ㅠ 따로 봐야하는건데 'f(0)보다 f(x)가 크거나 같고 g(x)가 f(x)보다 작거나 같다' 이렇게 봐야할 것 같습니다. 오류 지적해주셔서 감사합니다
그렇게 하더라도 g가 지나는 한점 있어야 할거 같네요
g(x)가 함수 f(x)의 접선이라서 지나는 점 없어도 풀릴겁니다
수정 완료했는데 발문에 문제 없는지 확인 한번만 부탁드려도 될까요?
아 최고차항 계수
2025 수능D - 8
연고대3회합격자(연상논술)
일관적인 해석과 독해로 영어1등급 쟁취하자
3등급 이하인 학생들을 1~2등급으로 올리는 것이 주특기인 수학/물리/영어 과외쌤
[ORION 소속] [부산/양산] 지구과학1 과외
과학 과외
수학 3->1등급, 무휴학반수 성공법
시간이 시간인지라.....머리가 안 돌아가서 오늘은 포기......
ㅋㅋㅋㅋ 시간 나실 때 풀어주시면 감사하겠습니다
넵....님 대단해요...모의고사 혼자 만드려니까 죽겠던데
ㅋㅋㅋ괜찮으면 제 거 검토 부탁드려도 되나 싶네요
수시생이라 슬프네요 ㅠ 1학기만 끝나면 최저 맞춰야하니 공부하는겸 풀어드릴 수도 있을 것 같습니다
g(0)=0 아닌가요 그냥..?
아닙니다 조금만 더 고민을 해보시죠
첫번째 조건 양변에 limx->0 f(x) 곱하면 그냥 limx->0 g(x)=0 나오고 g(x) 연속이니까 g(0)=0인데 뭐가 잘못됐을까요..?
아 맞네요 죄송합니다 문제 수정해드렸습니다 다시 풀어주시면 감사하겠습니다
엥 님 몇 학년임?
고 3입니다
06임? 와 내가 05인데....대단하네요....멋있는 동생
최대값 갖는 g(x)=x^2+4
조건을 저렇게 바꾸니까 f(x)랑 g(x)가 같아버리네요 의도한건 g(x)가 일차함순데
혹시 g(x) 일차함수인 경우도 한번 구해보실래요..? 바뀐 조건으로 푸시면 되실 것 같습니다
근데 g(x)가 일차면 모든 실수 x에서 g(x)가 f(0)보다 작거나 같은게 되나요? 일차함수 치역이 모든 실수인데
아하.. 급하게 만들다 보니까 오류가 너무 많네요ㅠ 따로 봐야하는건데
'f(0)보다 f(x)가 크거나 같고 g(x)가 f(x)보다 작거나 같다' 이렇게 봐야할 것 같습니다.
오류 지적해주셔서 감사합니다
그렇게 하더라도 g가 지나는 한점 있어야 할거 같네요
g(x)가 함수 f(x)의 접선이라서 지나는 점 없어도 풀릴겁니다
수정 완료했는데 발문에 문제 없는지 확인 한번만 부탁드려도 될까요?
아 최고차항 계수
f(x) = ax² + 4 (a ≥ 1)
g(x) = ax - 1/4a + 4
g(0) = -1/4a + 4 ≤ 15/4