지인선x이로운 모의고사(공통,확통,미적) 풀이 (링크)
https://cafe.naver.com/pnmath/3469790 (문제배포 원문 링크, 회원가입 필요)
https://cafe.naver.com/pnmath/3464347 (제작자의 저작권 관련 유의사항 및 시험지 컨셉 안내)
운 좋게도 지인선x이로운 모의고사를 배포 전에 풀어볼 기회가 있었습니다.
시간을 재고 풀어보고 그 풀이를 출제자께 제출하였고
배포 전까지 시간이 넉넉해서 몇 문항들에 대해 물어뜯어볼 시간도 충분해서
실전풀이에 생략된 내용이나 추가할 내용들을 영상으로 제작할까 하다가
손풀이 형식으로 써 내려갔습니다.
다양한 풀이를 열어두셨다는 출제자의 말씀에 제 실전풀이와 다른 방향의 풀이들도 고려해서 적어두었습니다.
문제를 풀어보신 분들은 맞추신 문제들도 한번 살펴보시면 도움이 될까 싶어서 공유합니다.
두 링크를 모두 보시면 좋을 것 같습니다.
https://cafe.naver.com/pnmath/3470040 (배포전 풀었던 실전풀이)
https://cafe.naver.com/pnmath/3470690 (실전풀이에 생략된 내용들을 적어둔 손풀이)
4개의 링크 중 문제배포 링크를 제외한 나머지 링크는 회원가입 없이도 볼수 있도록 열려있습니다.
부족한 부분은 이 게시물이나 해당 링크의 게시물에 댓글로 달아주십시오.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오늘 일정 0
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 3
부지런행
-
확통 미적 고민 8
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
인기없긴해도 점수맞춰야하는걸로알아서요
-
전 게이가 아닙니다.
-
에휴뇨이
-
롤 시즌종료언젠가요
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 3
미용실 다녀오기 오르비하기
-
만점 표점 11점이 나는 2024수능을 봤을때도 확통 다 맞는거랑 미적에서 3개...
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
-
얼버기 2일차 0
-
딱히 진로를 정하진 못했는데 이번에 아주대 전자(자전),미랴모빌리티 두개 넣어서...
-
초딩때 무지성으로 헤헤 최형우 머시따 하면서 볼때는 몰랐는데 수능끝나고 제대로 파니까 개복잡함
-
밝은척하면서 은근슬쩍 까는거+비틱질 역겨워죽게슴 소신발언
-
얼버기 2
-
스카가야지
-
잠이 2
-
지금 안정은 숙대고 홍대도 냈는데 일단 숙대를 가기로 마음을...
-
여르비랑 한번도 안만나봤는데 만나면 어떨지 호기심이 있음
-
수면패턴ㅋ.. 2
수면패턴 바꿀거라고 지금 밤샜는데 몽롱하고 그냥 자고싶은데 여기서 자면...
-
얼버기 4
-
진짜 미치겠다
-
그냥 26수능으로 sky를 가야겠다 마음먹어
-
제자야 기상해라 1
학원가야지 에휴
-
자야지 1
-
ㅈㄴ 간절함
-
ㅋㅋ
-
게임을안하니까 1
인생이꽤쾌적하네
-
진짜 찐찐 잠 0
ㅈ
-
쿠팡.. 시간빨리갔으면좋게ㅛ다..
-
엄마한테 재수할동안 교정이나해달라고할까
-
잘자 3
바이
-
개꿀잼메타돌앗나보네
-
대답.
-
등장 1
-
그의 유지를 잇기로 했어요 그래서 이름을 바꿈 앞으로 전 개쩌는 아카네 리제입니다
-
안지는 사람? 7
일어난 사람을 찾아야 하나?
-
확백하고싶다
-
나 아직 안잔다 1
그냥 그렇다고
-
26명 모집 92명 지원 점공 29/42 허허...
-
진짜 잠.... 2
에효이....한명이 갔네.....
-
나군 외대 LD 쓰려다 카드 결제 오류로 원서 못 써서 울며 겨자먹기로 성대 썼는데...
-
저 사실 적백 7
내전
28번에서 g를 f의 접선의 x절편의 역함수라고 두고 고민하다가 포기했는데 그냥 계산문제였군요…ㅋㅋ
미적분에서 함수 개형을 추론해야하는지 그냥 계산으로 뚫어야하는지 매번 포인트를 잘못 잡아서 틀리는거 같은데 양치기로 해결이 되려나요…? ㅠㅠ
저도 매번 같은 고민을 하는 것 같아요. ㅎㅎ;
개형 추론을 더 우선시 하고 접근하는 편인데 뭔가 케이스가 많아질 것 같다 싶으면
바로 식으로 접근하기로 돌려버리는 중인데
좀 더 실력이 늘면 그런 것들을 잘 구분할 수 있을까 싶고..
오 고수님도 마냥 수월하지만은 않군요… 위로가 되네요!