수열 기출의 발상 변화 과정 (17~23)
17학년도:
16수능을 마지막으로 여러가지 점화식, 계차수열, 조화수열, 군수열 등이 교육과정에서 없어진 첫 해이다.
(171121. 지금의 15번. 격자점 세기 유형)
지금 우리가 생각하는 수열스러운 킬러 문제는 나오지 않았고, 개정 첫 해 치고는 수열 단원에서 괴랄하거나 신유형인 문제 출제 없이 무난하게 넘어간 해였다.
18학년도 :
(180629. 축차대입 아이디어가 출제되었다.)
(180919. 6평과 같이 축차대입 아이디어가 출제되었다. 6평과 9평을 어렵게 내고 정작 18수능에는 수열 킬러 문제를 출제하지 않았다..)
이전 교육과정에 있는 여러가지 수열의 점화식에서의 핵심 아이디어는 축차대입법이었는데, 해당 단원은 사라졌지만 그 아이디어는 살아남아 출제되었음을 보여주는 문제이다.
이전 교육과정이라 볼 수 있지만 위 두 문제가 출제될 수 있었던 것은 평가원이 축차대입 이라는 아이디어는 특정 단원에 소속되어 있는 것이 아니라 수학 전반적으로 쓰일 수 있는 아이디어로 본 것일 가능성이 있다. 아무튼 축차대입 아이디어는 18학년도를 끝으로 이후에 다시 출제되지 않았다.
19학년도 :
(191129. 이전 교육 과정의 흔적을 완전히 지워버린 문제.)
개정 3년차에 처음으로 수능에 나온 수열 킬러 문제이다. 어려운 4점에는 등차, 등비가 아닌 수열의 점화식이나 귀납 추론이 나올 것이라는 예측을 완벽하게 깨뜨리며 등차,등비만으로 킬러를 낼 수 있음을 보여주었다.
등차수열의 합=등차중항x항의개수 를 떠올렸으면 계산량이 확 줄어들고, 못 떠올렸으면 an의 공차를 일일이 케이스 분류해주면 된다.
18수능 이후로 이전 교육과정 무용론이 대두되던 시기에 평가원이 이 문제로 이전 교육과정은 더 이상 공부할 필요가 없다고 종지부를 찍었다.
20학년도 :
(201121 지금의 15번에 해당하는 문제. 가지치기 문제. 점화식끼리 더한다는 발상.)
등차,등비로 출제한 1년 전 수능과 달리 점화식 문제가 출제되었다. 두 점화식 (가)와 (나)를 더한다는 발상을 할 수 있는지 없는지에 따라 문제 풀이 시간이 천지차이로 갈리게 되는데, 당시엔 두 점화식을 더한다는 발상이 지금처럼 당연한 생각이 아니었다. 이런 발상을 모평도 아닌 수능에 출제했다는 것이 더 당혹스럽게 한다.
이 발상을 떠올리지 못하면 a1부터 a63까지 꼼꼼한 노가다를 통해 전부 다 구해서 더하는 방식으로라도 답을 구할 수는 있던 문제였다.
(직접 해보니 일일이 다 구해서 더하는 데까지 10분 걸렸다. 문제를 처음 읽고 이거 저거 고민하다 63개 항을 모두 구해야 겠다고 결심할 때까지 걸리는 시간을 10분으로 잡으면 합쳐서 20분 정도가 걸린다.)
21학년도 :
(22예비15. 6평 이전에 출제되었다. 현재 수열 킬러 문제의 기본이 되는 역추적과 케이스 분류의 시초가 되는 문제이다.)
역추적이라는 개념이, 이전에는 역추적을 하니 더 편하다 하는 정도였다면 이제는 역추적을 하지 않으면 풀 수 없는 수준에 이르렀다. 다섯번째 항인 5에서 출발해 이전 항들은 어떤 값을 가질 수 있는지 케이스를 분류하고 모순을 찾아내서 완전한 수열을 찾아내라는 문제로, 현재 수능 킬러 문제는 이 문제를 변형한 것에 불과하다 해도 과언이 아니다.
(210921.지금의 15번. 위의 예비평가 문제와 흡사하다.)
a6으로부터 a4와 a5를 케이스 분류로 구한 후에 a3과 a4로 a2를 역추적, 그리고 a2와 a3로 a1을 역추적하는 문제로, 위의 예비평가 문제에서 핵심 아이디어를 차용한 문제이다.
조금 더 발전한 부분은 예비평가는 앞선 한 항의 케이스 분류만 시킨 반면, 이 문제는 a6의 앞선 a4와 a5 두 개의 항의 관계를 케이스 분류 시킨 문제이다.
(210614.지금의 9번.)
(211121.지금의 15번. 가나형에 공통 출제되었다. (가),(나) 까지는 똑같은데 마지막 물어보는 내용이 가형이 조금 더 어려웠다. 사진은 나형문제.)
위의 문제는 당해 6평 문제로, 20 수능을 겪은 학생은 어렵지 않게 세 점화식을 더하는 발상을 떠올려 문제를 풀어냈다. 떠올리지 못했다 해도 하나씩 대입하며 각 항의 값을 구해도 풀리는지라 어렵지 않은 문제였다.
밑의 문제는 당해 수능 문제로, 작년 수능과 올해 6평을 경험한 수험생들은 박스 안 (가), (나)를 보고 반사적으로 두 개를 더할 생각을 했을 것이다. 하지만 작년 수능과 달리 주어진 점화식을 별다른 변형없이 그대로 활용해서 우직하게 밀어붙이면 답이 나오는 문제이다.
22학년도 :
(220915. 예비평가 변형문제. 케이스가 2개로는 부족한가 보다. 이젠 3개다.)
이제는 대세로 굳혀진 역추적과 케이스 분류 문제이다. 이 역시 예비평가 문제를 변형한 문제인데, 이전엔 케이스가 2개였던 것과 달리 이제는 분류되는 케이스가 3개가 되어 문제를 더 복잡하게 만들었다.
다만 반복되는 구조를 집어 넣어 이를 눈치 챘다면 a부터 z까지 모든 경우의 수를 일일이 손으로 쓰지 않아도 문제가 풀린다. 또 다른 풀이로는 an을 x로 an+1을 y처럼 생각해서 그래프를 그려 풀면 가지 치며 푸는 것보다 실수를 줄일 수 있다.
(221121. 또 한번의 반전을 선사하는 평가원이다.)
이제 수열 킬러의 대세가 된 역추적과 케이스 분류를 엄청나게 연습했을 수험생들에게 평가원은 기존에 보기 힘든 낯선 형식으로 수능 시험에서 뒤통수를 친다.
다만 똑같이 뒤통수를 친 19수능, 20수능과 달리 문제 자체가 막 어렵진 않은데, 이런 문제는 어떻게 대비를 한다기 보다는 수에 대한 감각을 갖고 있는 지를 물어보는지라 누군가에게는 아주 어려운 문제였을 것이다.
23학년도 : 17학년도 이래 처음으로 수열 킬러가 6평,9평,수능에 모두 출제되었으며 그 세 문제가 점화식과 케이스 분류라는 같은 형식을 가졌다는 것도 특이한 점이다.
(230615. 이제는 식상해진 케이스 분류 문제에 주기성 발견이라는 요소를 섞어 난도를 끌어올렸다.)
역추적을 배제하고 케이스 분류만 출제한 문제이며, 모든 케이스를 고려 할 시 너무 복잡해져 반복되는 구조를 발견해 주기성임을 떠올려야 하는 문제이다. 직전해 9평처럼 반복되는 구조를 발견하면 계산량이 줄어든다는 점을 반영하였지만, 직전해 9평은 발견 유무가 난도에 큰 영향을 끼치진 않지만 이 문제는 발견하지 못하면 사실상 풀지 못하는 문제이다.
역추적+케이스 분류 시대 시작을 알린 예비평가 문제에서 이제는 반복되는 구조와 주기성 발견까지 추가적으로 해야 하는 시대가 되었음을 알리는 문제이다.
(230915. 힘을 뺀 역추적+케이스 분류+주기성. 앞으론 세 개 모두 힘을 준 문제?)
역추적+케이스 분류+주기성 3개가 모두 종합된 문제이지만, 3개 모두 어렵지 않은 방식으로 출제된 지라 악명 높은 문제가 되지는 못했다. a4와 a8로 r의 값을 확정 짓고 역추적으로 a1, 주기성으로 p의 값을 구해주면 되는 문제.
(231115. 역추적 케이스 분류 문제가 수능에 나온 건 이번이 처음이다. 이전엔 모평에서만 나왔다.)
a7로부터 a6,a5…의 값을 케이스 분류 하며 역추적 해야 하는 문제로, 기존 문제들은 부등식을 이용해 특정 범위로 케이스 분류를 시킨 반면 이 문제는 3의 배수인지 아닌지로 케이스 분류를 해야 하는 정수론적인 성격이 들어있는 것이 가장 큰 차이점이다. 사실 수열에서 약수와 배수 이야기는 이전에 킬러가 아닌 기출 문제에는 자주 등장하였지만 케이스 분류 킬러 문제에 적용된 것은 이것이 처음이다.
식상해진 케이스 분류 유형을 어떻게든 새로운 소재와 결합시켜 고난도로 출제하는 모습을 볼 수 있다.
0 XDK (+1,000)
-
1,000
-
정시로 서성한 중경외시 공대 희망하는데 과1사1이 사2보다 메리트가 없나요?
-
현재 현역 정시로 성균관대 공학계열 진학사에서는 추합권 텔그에서는 최초합 권입니다....
-
내년엔 잘될 거야 아마두
-
24수능 ㅇㅈ 7
18살때 봤던거네용
-
있음?
-
성대 2
이번엔 언제 조발 예상하시나요
-
한서삼 삼여대는 가까운 곳 가는게 맞다고 하던데 인가경이랑 비교햇을때도 그녕 가까운...
-
그게 나야~ 536드가장
-
개열받네
-
사건사고가 되게
-
최대한 확증편향에 안빠지고 수용해볼려했지만 흠...
-
연말인데 0
저한테 덕코주실분
-
그니까 키작고 못생기면 헬스말고 런닝이나 하십쇼..
-
영남약 1
영남약 좋을까요 지방약은 다 거기서거기인가요 전통있고 대형과면 더 좋은건가요? 진학...
-
영어 공부시간 0
예비고2고 영어는 항상 95~93점 나오는 1등급이고 방학때 영어공부 시간이 너무...
-
사문 지구/ 사문 한지 중에 뭐가 나음????? 아니면 사문 정법??
-
나한테 줘야함
-
나이기만이 가장 부러움 다른건 진심으로 어지간하면 안긁히는데 나이기만은 ㄱㅁ을...
-
‘외향적인 찐따.’ 임 이건 진짜 주변에 민폐만 끼치는데 본인도 존나 고통스러움
-
이제 괜찮지 않아졌음
-
12명 모집 적정표본수 확보에 3등입니다 더 적게 모집했던 작년 재작년 추합 둘다...
-
예~전에비하면 전문직 시험 훨 많이치니까
-
뭘 보고 씀?
-
반영과목은 1과목 써져있는데 과목별로 n프로 부여<-이러면 과2 했을때 가산점 두번...
-
고3이 그립구나
-
개부럽다..
-
642 어때요 3
6은 최초합권 한 번도 벗어난 적 없이
-
마지막 날에 하는게 국룰임?
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
제가 10만원 지불할테니 9만원 내시고 같이 쓰실 분 계시나요 댓글이나 쪽지 부탁드립니다.
-
국어 과외 교재 0
국어 과외하려고 하는데 5등급 기출 분석 교재 뭐 쓰면 좋을까요?
-
8칸과 44 1
8칸짜리 박고 4칸으로 질러도 괜찮은 거임? 3떨 안 하겠지? 8칸 떨이 있나?
-
92명 뽑 현재 59등임 작년 예비 120번까지 돎
-
올해 홍대 논술 국문과 예비 몇 번 까지 돌았나요?
-
연뱃받아야지 2
사실 살면서 왜인지는 모르겠는데 인성터진 고대 학부생 빌런이 너무 많았어서...
-
저 개인적으로도 참 많은 것들을 느낄 수 있던 한 해였음
-
사1과1vs사2 3
사탐 과탐 둘 다 노베라고 했을때 과탐 가산점 10프로면 과탐 한 과목 해볼만...
-
내가 왜 22살임? 18
뭐했다고...
-
강해린과 결혼하고싶습니다.
-
솔직히 침대에 따듯하게 이불 덮고 귤까먹는 제가 승리자 같아요..
-
. 0
2025라니 두렵다 내가 더이상 저 년도를 감당하지 못하는 것 같음
-
흠
-
시대 컨설팅 받았는데 안 될 것 같다는데 걍 마음이 그럼요...
-
원광한 1
표본 왜이럼? ㅈㄴ 안돌듯 ㅅㅂ새끼들아 작작해라진짜
-
소신발언 11
수능판을 떠났다면 자기관리를 꾸준히 해주세요 얼굴이 아무리 못 생겼어도 피부 가꾸고...
-
동국대 홍익대 4
동국대 전전 vs 홍익대 전전
-
그만들어와
-
국어:강기본 수강중 <—-이것도 만만 ㄴㄴ 고2모고 34 등급 수학: 미적 할거라서...
이런 글 좋음
감사합니다!
진짜 제일 싫은 15번 수열
까다롭죠 ㅋㅋ
ㅇㅎ 이렇게 년도별로 보니 신기하네요
이렇게 보면 흐름을 알 수가 있어서 공부할 때 좋죠
작수 15나 6평 15처럼 내면 풀 자신이 없어요ㅜㅜ 수열 넘 어려운것…
둘 다 케이스 분류에 기존 요소를 섞은 유형이니 케이스 분류와 기존 요소 중 어느게 약점인지 파악하시고 연습하시면 돼요!
뭔가케이스분류 ㅈㄴ 좋아하는 듯요
수2나 선택과목 킬러엔 항상 케이스 분류가 들어가는데 수열도 그런 거 보면 진짜 평가원이 케이스 분류는 기본으로 넣는 거 같아요
와 정말 대단한 분석이네요. 잘 봤습니다.
이런 표현까지...감사합니다!