[수학 칼럼] 불연속함수와 연속함수의 곱
안녕하세요? 지인선입니다.
오늘은 함수의 연속, 미분 단원과 관련된 5가지 문제를 풀어보며, 불연속함수와 연속함수의 곱함수에 대한 논의를 해보고자 합니다.
특히, 오개념이 있을 수도 있는 파트여서, 꼭 제대로 알아야 하는 파트입니다.
목차는 다음과 같습니다.
1. 불연속점의 분류와 불연속함수와 연속함수의 곱: 연속성
2. 불연속함수와 연속함수의 곱: 미분가능성
1. 불연속점의 분류와 불연속함수와 연속함수의 곱: 연속성
우선 다음 문장이 참인지 아닌지 판단해볼까요?
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, h(x)=f(x)g(x)가 x=a에서 연속이려면 g(a)=0이다.'
이 문장은 참입니다. 아마 자주 공부하셔서 아는 내용일 겁니다.
그래도, 관련 문제 하나를 풀면서 기억을 상기시켜봅시다.
1) 2016학년도 6월 모의평가 A형 29번
지금 |x^2-2x|의 극댓값이 1이고, x=0과 x=2에서 극소이므로 f(t)는 t=0, t=1에서 불연속입니다.
이 불연속점을 없애주기 위해, g(x)는 g(0)=g(1)=0이 되어야 하고, g(x)=x(x-1)입니다.
8년 전에는 이런 문제가 29번이었네요... ㅠ 고생이 많으십니다 여러분
자 그럼 다음 문장은 참일까요?
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, g(a)=0이면 h(x)=f(x)g(x)가 x=a에서 연속이다.'
이 문장은, 앞의 문장에 역을 취해준 것입니다. 차이점이 보이시죠?
답은 거짓입니다.
이를 이해하기 위해선, 저희는 '불연속'이라는 말을 자세히 들여다볼 필요가 있습니다.
함수 f(x)가 x=a에서 연속이다라고 함은, 다음을 만족한다는 뜻입니다.
딱 한 표현이지만, 주의하셔야 합니다.
극한은 많은 조건을 내포하고 있기 때문입니다.
저 한 줄 조건은 다음과 같은 많은 뜻을 의미합니다.
1) x=a에서 f(x)의 좌극한이 존재하고
2) x=a에서 f(x)의 우극한이 존재하며
3) 좌극한과 우극한 값이 서로 같아서 극한값이 존재하고
4) 극한값이 함숫값과도 같아야 한다.
이 4가지 조건 중 어느 하나라도 만족을 못한다면 x=a에서 연속이 아닙니다.
유식해지는 기분을 느끼게 해드리기 위해, 수학과에서 배운 고오급진 용어를 사용해서 다시 정리를 해드리면
(없는 용어가 아니라, https://ko.wikipedia.org/wiki/%EB%B6%88%EC%97%B0%EC%86%8D%EC%A0%90%EC%9D%98_%EB%B6%84%EB%A5%98
에서 정의된 표현 그대로 사용했습니다.)
1)또는 2)를 만족시키지 못한다면 -> 제 2종 발산형 불연속점(point of infinite discontinuity)
3)을 만족시키지 못하면 -> 제 1종 점프 불연속점(point of jump discontinuity)
4)를 만족시키지 못하면 -> 제 1종 제거 가능 불연속점(point of removable discontinuity)
입니다. (1종과 2종의 구분은 좌극한값, 우극한값 자체가 존재하는지 여부입니다.)
여기서, 앞의 문장
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, g(a)=0이면 h(x)=f(x)g(x)가 x=a에서 연속이다.'
가 거짓인 이유를 알 수 있습니다.
만약 f(x)가 제 2종 발산형 불연속점을 갖는다면, 예를 들어
이라고 했을 때, x=0에서 제 2종 발산형 불연속점이죠?
g(0)=0을 만족시키는 함수 g(x)=x를 곱한다고 해도
이므로, x=0에서 제 1종 점프 불연속입니다. 그러면 저희는 어떻게 해야 할까요?
간단합니다. g(x)=x^2과 같이, 0으로 가는 힘이 더 센 녀석을 만들어주면 됩니다.
만약 g(x)=x^2이라면
이므로, x=0에서 연속이지만 미분불가능하게 되네요.
다음 주제를 다루기 전에 한 술 더 뜹시다. f(x)g(x)가 x=0에서 미분가능하게 하려면 어떻게 해야 할까요?
g(x)=x^2이었다면, x>0에서 f(x)g(x)=x, x<0에서 f(x)g(x)=2x^2이므로, x=0에서의 미분계수가 같지 않네요.
이 때에도, 0으로 가는 힘이 더 센 녀석을 만들어주면 됩니다.
g(x)=x^3이라면
은 미분가능합니다.
여기까지 잘 따라오셨다면 좋은데, 혹여 이런 식으로 성급하게 결론 내리시지 말기를 바랍니다.
'아하 x=a에서 연속이나 미분가능성을 따질 때, 1/(x-a) 같은 녀석이 있다면, 연속을 만들려면 (x-a)^2, 미분가능하게 하려면 (x-a)^3을 곱해야 하는구나!'
바로 반례를 드리겠습니다. 2018년 11월 고2 모의고사 나형 29번입니다.
2) 2018년 11월 고2 모의고사 나형 29번
여기서는, f(x)가 (x-4)^2을 인수로 가지기만 하면 됩니다. 이유는, 추후 설명해드리죠.
우선 답은 입니다.
2. 불연속함수와 연속함수의 곱: 미분가능성
이 주제와 관련하여 가장 큰 영향력을 가진 수능 기출문제를 봅시다.
3) 2020학년도 수능 나형 20번
ㄱ 선지는, 저희가 맨 처음에 다룬
'x=a에서 불연속인 함수 f(x)와 x=a에서 연속인 함수 g(x)에 대하여, h(x)=f(x)g(x)가 x=a에서 연속이려면 g(a)=0이다.'
으로 바로 나옵니다.
ㄴ 선지를 풀 때 주목해야 하는 것은, f(x)는 x=2에서 연속인데 미분가능하지 않다는 것입니다.
물론 x<2와 x>2로 나눠서 도함수 구해서 푸는 것이 ebs 해설의 정석인데요.
첨부해서 보여드리면
계산이 힘들다기보다는, 음... 뭔가 중요한 통찰을 없애버리는 풀이긴 해요.
저는 다르게 풀고 싶습니다. '미분계수의 정의 그 자체'를 이용해서요. (중요)
제 풀이는 다음과 같습니다.
p(x)는 다항식이므로, p(x)=(x-2)Q(x)+R로 나타낼 수 있습니다.
그렇다면,
입니다. 그 전에, 함수 h(x)가 x=2에서 미분가능하다는게 무슨 뜻이죠?
가 존재한다는 것입니다. 그렇다면, 저희는 쉽게
가 x=2에서 미분가능하다는 것을 알 수 있습니다. 왜냐하면, 저 h(x)자리에 그대로 (x-2)Q(x)f(x)를 집어넣으시면, 분모의 x-2가 사리지기 때문입니다.
따라서, p(x)f(x)가 x=2에서 미분가능하려면, (x-2)Q(x)f(x)가 이미 x=2에서 미분가능하므로, Rf(x)또한 x=2에서 미분가능해야 합니다.
이게 가능하려면 R=0이 되어야 하죠? 따라서 p(2)=0입니다.
이런 식으로 '미분계수의 정의 그 자체'를 이용하는 것이 앞으로도 다른 문제에서 큰 도움이 됩니다.
그래야 통찰이 생깁니다.
이런 식으로 풀지 않고, x<2와 x>2로 나눠서 일일히 도함수를 구해서 푼 다음에, 그렇게 푸는 것이 복잡하니까
2020학년도 수능 나형 20번이 나온 이후에 사후적으로
'아하 f(x)가 x=a에서 연속이지만 미분가능하지 않을 때, 다항함수 g(x)에 대해서 f(x)g(x)가 x=a에서 연속이려면 g(a)=0이어야 하는구나!'
라고 중간과정 설명없이 암기식으로 가버리면 추후 다른 식으로 포장해서 나올 때, 대처할 수 있는 능력이 없어져버려요.
ㄷ 선지는 ㄴ을 잘 풀었다면 간단합니다. f(x)^2은 다음과 같이 생겼습니다.
x=0에서 제1종 점프 불연속점이고, x=2에서 연속이지만 미분가능하지 않네요.
p(x)가 x=0에서 미분가능하려면, x^2을 인수로 가져야 하는 것이 맞습니다.
만약 p(x)가 x인수를 오직 하나만 가진다면, 즉
이라면, 미분계수의 정의 그 자체에 의해
의 극한값이 존재해야 미분가능입니다. 하지만, g(0)은 0이 아닌데, f(x)^2의 좌극한과 우극한이 다르므로 극한이 존재하지 않죠.
따라서, p(x)는 x^2인수로 갖는 것이 맞는데, (x-2)는 하나만 가져도 됩니다. ㄴ선지에서 봤던 논리 그대로 쓰면 됩니다.
20번에서 얻어갈 수 있는 Take away는 다음과 같습니다.
다항함수 p(x)에 대하여
1) f(x)가 x=a에서 제1종 점프불연속이라면->
p(x)f(x)가 x=a에서 연속이려면: p(x)는 x-a 인수로 가짐
p(x)f(x)가 x=a에서 미분가능하려면: p(x)는 (x-a)^2을 인수로 가짐
2) f(x)가 x=a에서 연속이지만, 미분가능하지 않을 때->
p(x)f(x)가 x=a에서 미분가능하려면: p(x)는 x-a인수로 가짐
제가 1)과 2)로 분리했지만, 사실 서로 매우 관련 깊은 내용입니다. 결국 (x-a)인수 하나씩 차이가 나죠?
왜냐하면, x=a에서 제1종 불연속점인 함수에 (x-a)를 곱하면, x=a에서 연속이지만 미분가능하지 않은 함수가 되기 때문이죠.
예를 들어,
라 할 때, x-2를 곱하면
입니다. 그림으로 나타내면
이죠.
한 마디로, x=a에서 제 1종 점프 불연속을 갖는 함수에 x-a를 곱하면, x=a에서 연속이지만 미분가능하지 않은 함수가 됩니다.
그래서, 1)에서 (x-a)인수가 하나 더 필요한 것이죠.
6. 2024학년도 수능 대비 지인선 N제 9회 14번
이 문제를 가져온 이유는, 제가 소개한 여러 불연속점 중에 다루지 않았던 불연속점을 포함하고 있기 때문입니다.
바로, 제1종 제거가능 불연속점이죠.
왜 제거가능인지 그림으로 설명해드리면,
이 함수에서, x=0에서의 함숫값만 동떨어져서, 불연속이 된 것인데
만약 함숫값 f(0) 만 잘 조정해서, f(0)=2를 만들어준다면 바로 연속함수가 되죠.
이렇게, 함숫값만 조정해줘도 연속을 만들어줄 수 있어서, 제1종 제거가능 불연속점이라고 부릅니다.
다시, 지인선 N제 9회 14번 문제를 보면
두 점에서 불연속이려면 f(x)=p(x-1)^2(x-3)이 되어야 합니다. 그에 따른 g(x)의 개형은 다음과 같죠.
(ㄱ은 그래서 참입니다.)
ㄴ은 결국, g(x)자체를 잘 옮겨서, g(x)g(x-p)가 x=3에서 미분가능하도록 할 수 있냐는 것입니다.
미분가능하면 적어도 연속이어야 하므로, p=0또는 p=2가 되어 불연속 곱하기 불연속이 연속이 되는 경우가 있는지
(이것도 중요함)
그리고 p=3이어서 g(x-p)가 x=3 근처에서 함숫값이 0인 연속함수가 되는 경우를 따져야 하죠.
p=0이나 p=2가 되어, 불연속점이 일치하는 경우에도 g(x)g(x-p)는 미분불가능하고(직접 확인해보시는게 좋은 연습이 될 겁니다.)
p=3이어서 연속을 만들어줘도, g(x)가 x=3에서는 제1종 점프 불연속점이어서 x-3 인수 하나만으로는 부족합니다.
따라서, ㄴ은 참입니다.
ㄷ은 주의해야 합니다. 왜냐하면, x=1은 제 1종 제거가능 불연속점이기 때문이죠.
예를 들어, 다음과 같은 제 1종 불연속점을 갖는 함수가 있다 해봅시다.
이 함수에 (x-2)를 곱해봅시다.
이 함수를 그리면
그냥 x(x-2)라는 이차함수, 즉 미분가능한 함수가 됩니다.
제 1종 제거가능 불연속점의 특별한 점입니다.
얘는 인수를 하나만 곱해줘도 연속인 동시에 미분가능이 됩니다.
따라서, ㄷ에서 p=1이라면, g(x)g(x-p)는 x=1에서 미분가능하게 됩니다. 따라서 ㄷ은 거짓이죠.
여기서 얻을 수 있는 Take away는 다음과 같습니다.
3) x=a에서 제1종 제거가능 불연속점을 갖는 함수 f(x)의 경우->
(x-a)를 인수로 갖는 다항함수를 곱하면 연속인 동시에 미분가능한 함수가 된다.
이쯤에서 다시 이 문제로 돌아가 봅시다.
우선 g(x)는 x=4에서 제 2종 발산형 불연속점을 갖습니다.
여기에 (x-4)를 하나 곱하면
더 간단히 나타내면
입니다. 즉, 제 2종 발산형 불연속점에 x-4를 곱하니, 제 1종 제거가능 불연속점이 되었습니다.
따라서 이 경우에는 (x-4)^2만을 가져도 되는 것입니다.
앞서봤던 예시인
의 경우에는, x인수를 하나 곱하면 (g(x)=x)
이므로, 제1종 점프 불연속점이 된 것이랑 차이가 있죠.
따라서 이때에는 세제곱 인수가 필요했던 것이었죠.
이 칼럼에서 여러분이 얻어가시면 좋을 내용을 2줄 요약하면
1) 불연속점의 분류에 따른, 곱함수의 연속성(미분가능성)을 위한 인수의 개수
2) 연속함수의 미분가능성을 따지기 위한 '미분계수의 정의'를 이용한 논리
입니다.
감사합니다.
0 XDK (+11,010)
-
10,000
-
10
-
1,000
-
왜 있는 거임?? 뭔 차이가 있는 건가요 이런 말 오르비에서 여러 번 본 것 같은데
-
말그대로 한번에 찍었다는 뜻 오늘은 텅빈 영화관을 찍어보았습니다.
-
기하 74점 3
3등급은 확정이다 생각하면 되겠죠?
-
정시로 중경외시 되나요? 수학에서 시원하게 말아먹어서 감도 안와요
-
나도 질문받슴뇨 14
뻥임뇨
-
무지성 질받 28
알코올의힘으로 주제무관 수위무관 삼반수(예정)생의질받
-
생2는 솔직히 5
어느정도로 고였나요? 1컷정도 목표인데 코돈빼고 다맞는다는 마인드로 공뷰하면...
-
ㅂㅅ들
-
퇴근 11
-
호흡 딸리거나 목 상해서 예전같지 않은 걸 보면 뭔가 슬프다
-
뻥임뇨
-
ㄹㅇ
-
컨설팅은 못받을거 같은데 이거 공부법은.앖나ㅋㅋㅋ
-
건대 공대쓰면 가능성없을까요? 어디 라인이 적정인가요..
-
사문 2컷 40 0
일 가능성 있을까요 ㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂㅈㅂ
-
안녕하세요! 연세대학교에 재학 중인 쿼드라고 합니다! 벌써 수능이 끝난지 4일이...
-
진짜 자지 자른거 ㅇㅈ하겠습니다
-
건동홍이상 공대가 목푠데 미적 낮4 떴습니다. 확통 0~1개 틀리는 거 vs 미적...
-
1컷 88은 절대 아님 11
이건 내 자지걸고 얘기할수있음
-
가채점표 잘 받아적은 것 같기는 한데 혹시 내가 잘못 받아적지는 않았을까, 이걸로...
-
정시에 내신 반영하는데 정시 100전형이랑 내신반영 전형 구분 되어있나요? 아니면...
-
고속이랑 메가에서 소신이 뜨기는 하는데....
-
짧게 하자면~ -훌륭한점. 443HZ라는 튜닝에 맞춰서 악기 하나하나가 맞추기가...
-
의외로 맛있네요
-
특별전형은 대부분 1~5명 내외로 소수로 뽑는 경우가 많아서 등급을 측정하기가...
-
흑미 맛은 잘 모르겠고 겉에만 까만 화이트하임 느낌 좀 아쉽...
-
과탐 선택 2
고1이고 의대진묘목표로 생1화1 개념공부 하고 있습니다 생1은 저랑 잘 맞는것같고,...
-
일단 나부터 ㅅㅂ
-
여기 4년제 대졸자 단 한명도 없음 최고 아웃풋이 반만년만에 본인 첨 나옴 기쁘다
-
만점이나 1등급 받는게 목표가 아닌데 저렇게 두 개만 들어도 될까?? 김범준 범준 대성
-
https://youtu.be/Wb5Pq86AV1I?si=KGRQi8NnCYNGJ9nn 신기허네
-
지구 1컷 44? 21
22수능 예상 44 -> 실제 43 23수능 예상 43-> 실제 42 24수능 예상...
-
능수 커리어로우 찍어서 25수능 국 : 85(2) 수: 84(2) 영 : (1)...
-
ㅅㅂ ㅋㅋㅋㅋㅋ
-
진학사가 국어 컷이 살짝더 높던데 어디가 제일 정확한가요…???ㅠㅠㅠ
-
주식하셈뇨 토스증권으로 하면 접근성 goat임뇨 10만원 가지고 게임한다 생각하고...
-
아파트 들으면서 운 썰 16
로제랑 브루노마스랑 노래 냈다길래 오우 이건 들어봐야지했는데 인터넷뉴스에서 갑자기...
-
지금 현재 기하가 이차곡선 평면벡터 공간도형과공간좌표 아님? 뭐가 빠졋다는거?
-
12월 말에 하는거 나름 정확한가요?
-
이거 물리보더 고였나요?? 올해 물리 컷 꼬라지 보고 물리에서 화1생1이나 투로...
-
변호사 검사 해야하는데 하
-
개념강의 들어봤는데 김기현 쌤이 더 잘 맞는것 같아서 들어보려 하는데 1. 김기현t...
-
서강 성균관 한양 중에 가고싶어요ㅠㅠ 고대 어문은 힘들겠죠..???
-
닥전?
-
국어/수학 불이라 상위권이 덜 촘촘해지고 표점이 높아져서 그런거 맞나요? 그럼...
-
?
-
반영비 35 25 25 15 던데
-
괜찮네요 모의면접하고 나니까 배고프더라고요
-
구라임뇨
진짜 감사합니다 !!
이번 칼럼 내용 알차니까 꼭 읽어주세요!! 감사해요!!
저 내용이 2017학년도 10월 학평 나형 30번에 그대로 나와 있었습니다
어떻게 보면 저기 나온 사후적인 풀이로 그냥 암기식 접근을 한 건지는 모르겠지만..
아직까지 기억에 남네요 ㅋㅋㅋㅋ
칼럼 잘 읽었습니다!
조력자 이론을 벅벅
그게 머에요?
현T의 소화기 던지기 같은 거용
소화기 던지기도 몰라요 ㅠ
지인선님 칼럼이랑 자료 항상 감사하게 생각하고 있습니다!!! 이번 N제도 얼른 풀어볼게용
고마워요 ㅎㅎ
저도 사랑해요
조력자이론 하나면 끝
조력자 이론이네요