칼럼3) 1/2 차이
[이 칼럼은 수능 공부에 큰 도움이 되지는 않습니다.
등차수열의 합 Sn에 대해 깊게 탐구한 글인데요,
관심 있는 분이 아니라면 다른 칼럼 보러 넘어가세요.]
이 칼럼은
위 칼럼의 속편입니다.
이번 칼럼의 목적은
Sn의 꼭짓점과 an의 x절편이 1/2만큼 차이나는 이유를 기하적으로 설명하는 것입니다.
우선 앞선 칼럼에서 두 가지 정보를 확인해놓았습니다.
1. Sn은 반드시 x축과 두 번 만난다.
2. Sn과 an은 반드시 2개의 교점을 가진다.
이때 언급한 조건이 있었죠?
an의 공차가 양수이고 an의 x절편이 1/2이 아닌 경우를 다루겠다고 했는데,
공차 양수는 별 의미 없이 편의상 정해둔 것이구요
잠시 x절편이 1/2이 아니어야 하는 이유를 간단하게 짚고 넘어가겠습니다.
이 글 맨 위에 있는 공식에 의해 an의 x절편이 1/2이라면 Sn의 꼭짓점의 x좌표가 0이 되는데, S0 = 0이므로 0에서 중근을 가져버립니다. x축과 한 번만 만나는 것이지요. 1번 "Sn은 반드시 x축과 두 번 만난다." 에 위배됩니다.
아무튼 1,2번을 만족하게끔 그림을 그려보겠습니다.
일단 Sn입니다.
Sn의 두 근을 0, 2k라 하겠습니다. 일단 k를 양수라 가정할게요. 즉 왼쪽 근이 0인 것이죠.
Sn의 꼭짓점의 x좌표는 k가 될 것입니다. 그 점에서 미분계수는 0입니다.
여기에 an, 그리고 Sn과 an 의 두 교점 B, D도 표시해보겠습니다.
B의 x좌표는 1, D의 x좌표는 2k+1이 됩니다. (앞 칼럼에서 그 이유를 다룸)
점 B와 D의 중점의 x좌표는 k+1인데요, 함수 Sn 위의 점 (k+1,Sk+1)을 찍어보겠습니다.
점 (k+1,Sk+1)에서 접선도 그려보았는데요, 이 접선의 기울기는 an의 공차 d일 것입니다.
아래 이차함수 성질에 의해서 말이죠!
(이차함수의 유명한 성질)
다시 원래의 그림으로 돌아가서
x좌표가 k일 때 미분계수가 0, 그리고 x좌표가 k+1일 때 미분계수가 d라는 것은,
x좌표가 k+1/2 일 때는 미분계수가 d/2임을 의미합니다.
한편, 점 O(원점) 과 점 D의 중점의 x좌표가 k+1/2입니다.
이런 상황인거죠. 그럼 점 O(원점) 과 점 D를 이은 직선의 기울기가 d/2라고 말할 수 있겠죠. 아까 써먹은 이차함수의 성질을 역으로 이용한 겁니다.
지금까지 찾은 것들 중 필요한 것들만 따로 그려보겠습니다.
표시한 두 직선은 직선 OD와 an인데요, 둘은 기울기가 각각 d/2, d라서 딱 2배차이 납니다.
기울기가 2배차이라는 것을 다음과 같이 인식할 수도 있습니다.
그림에 표시한 빨간 직선은 점 D와 x축을 수직으로 이은 것인데요, 기울기가 d/2인 직선은 빨간 직선만큼을 올라가는데 x좌표로 2k+1만큼 가야 했으니(점 D의 x좌표가 2k+1입니다.) 그보다 기울기가 2배인 an은 2k+1의 반인 k+1/2만큼만 가면 빨간 직선만큼 올라갈 수 있을 것입니다. 즉, an이 0을 지나는 점이 k+1/2인 셈이지요.
한편 이차함수의 꼭짓점은 x좌표가 k였으므로,
이라 할 수 있겠습니다. an이 0을 지나는 점이 더 오른쪽에 있는 셈이지요.
방금까지 이를 기하적으로 보인 겁니다.
준비한 내용은 여기까지입니다.
이 칼럼은 생각할 거리 하나를 던지며 마치겠습니다.
첫 번째의 경우 y=k가 0을 지나는 지점과, 그 옆에 시그마 결과값인 이차함수 y=n(n+1)/2의 꼭짓점은 x좌표가 1/2 차이입니다.
두 번째의 경우, y=k2이 0을 지나는 지점과, 그 옆에 시그마 결과값인 삼차함수 y=n(n+1)(2n+1)/6의 변곡점은 x좌표가 1/2 차이입니다.
세 번째의 경우, y=k3이 0을 지나는 지점과, 그 옆에 시그마 결과값인 사차함수 y={n(n+1)/2}2의 극대점은 x좌표가 1/2차이입니다.
다항식으로 표현되는 일반항과 수열의 합 사이에서 1/2이 뭔가 의미를 가진걸까요? 가졌다면 어떤 의미이며, 왜 하필 1/2일까요? 혹시 수열의 간격이 1인 것과 연관이 있진 않을까요?
생각해볼만한 주제입니다.
전 다음에 더 좋은 글로 찾아뵙겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어떻게 공부하는게 맞을까요 장점이자 단점인 것은 하방도 1컷이고 상방도 1컷이라는 점입니다.
-
나 존나 늦게자는데 대체왜
-
기하 없는 유일한 시험...
-
논술보러 가는데 부모님이랑 갈만한곳 추천 부탁드립니다.
-
국어 질받 해보고 싶은데 나도 내가 어쩌다 국어 1 된건지 몰라서 해줄 말이...
-
수능끝나꼬 계속 늦잠이안자짐... 늦게자도 7,8시쯤이면 눈떠지고 돌아누워도 점점 잠이 깨요
-
수학 실수해서 잠수 나락간거 말고도 최저도 못맞췄으면 진짜 자살마려웠을거같은데...
-
한번만 봐주세요 ㅜㅜ
-
수학 1컷을 88을 만들어? 아무리봐도 체감 1컷 84-85였는데 공부는 너희들이...
-
clothing20snu 대성 커피 먹구가~~ ⸝⸝ɞ̴̶̷ ·̮ ɞ̴̶̷⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
고대논술 도착 0
다들 파이팅
-
아니 진짜 1컷 47이라고…?
-
경희대 인논 0
1번이 진짜졷나 어려웠는데 다들 어떠셨나요?
-
24수능 43254 25 9모 22233 25수능 33344 인데 수학계산실수틀,...
-
대충 어디정도까지 될까요??
-
평가원 진짜 이러기야? 우리가 몇년짼데 이정도도 못깎아줘?
-
성논 입실 10
혜화역 40분 도착인데 퇴계인문관까지 ㄱㄴ?
-
성대논술 가는중 7
나 한번만 더 붙여줘
-
텔그이거 0
핵펑크 펑크 이런거도 나오네 눈치싸움 더 빡세지겄노....
-
난 존나 쉽게 긁힌다는걸 빼면 커뮤랑 참 잘맞는데 가끔 안그런척 말 존나 줫같이하고...
-
지방의 성적이면 인설약이나 최상위 약대 다 가능한가요? 치한수도 알려주시면 감사..
-
남들이아니라나한테
-
ㅇㅅㅇ
-
이렇게 일찍하냐;; 개힘들게 하
-
실수도 실력임 2
근데 운은 실력이 아니라고 생각함 내가 실전에서 실수로 틀린 건 반성해야하지만 운의...
-
기하 안하시는 이유가 머죠 공부량이든 난이도든 기하가 압도적으로 수월할텐데 표점도...
-
생각해보면 계산실수도 잦고 그냥 풀이 방향성 찾는 거만 잘하는 듯
-
삼수생 조언 1
약대 목표입니다 1. 7월까지 공부하다가 공군입대 후 26 27수능 2. 쌩삼수...
-
생윤 47점인데 진학사랑 메가에선 표점 74라는데 고속에선 66으로 뜨네요…??...
-
미적: 아 미적 왜했지 확통할걸 기하를 해야한다는거임..
-
제 생기부 확인할 수 있나요?
-
배성민T 드리블 0
내년에 배성민쌤 드리블 수강 할 예정인데 겨울방학에 학원에서 하는 실전개념 한 후에...
-
잘자 해줘 4
안하면 나 몬자..
-
그냥 이제 내 소유임 ㅇㅇ
-
졸리 다는거임 0
잘게용
-
수시 쓸 땐 제발 의대 납치 되게해달라고 빌었는데 정작 수능에서 100 96 1...
-
미적30번풀어봄 0
기냥 잘 흘러흘러풀먼 풀리겟네요
-
자기~~
-
피드백 해주세요. 여친한테 선물하고 싶어서
-
미적28벜풀어봄 0
갠적으로뽀인트 1. gx 구하고 x*gx 미분하고 1너으면 답이되므로 g구하고...
-
인생그냥답이없네 0
ㅋㅋ왜살까
-
5월 23일임 노린 거 아님 참고로 커뮤는 오르비만 함
-
삼수,삼반수 1
현역 87478에서 재수 45422 까지 올렸습니다 현역때는 공부를 안했던 것도...
-
성격 존나 더러워짐 이젠 일 안하지만 아직 신경질적인게 남아있는듯
-
질문 받음 7
고졸 무직 걸그룹 마스터 야구 중독자
-
약대.25학번 예정인데 공부량 많음? 지금부터 물1,2 생2,화2 공부해서...
-
당신도 예비 의대생 1일 1의학 문제 (241117) 2
31세 여자가 혈압이 낮다고 병원에 왔다 오른쪽 팔에서 측정한 혈압 측정 결과...
-
200 ㄷㄷ
-
건국대는 경북대가 못비비는거 맞는 것 같은데 저는 동국대 홍익대 공대보다 경북대...
믿고보는무민쓰
무민님..