라이프니츠의 위엄 #다이어그램
0. 라이프니츠의 위엄
유튜브에서 '이게 바로 라이프니츠의 위엄이죠' 영상을 봤습니다.
저도 떠오르는 게 있어서 주저리주저리 라이프니츠 썰을 풀어봅니다.
1. 정언문장
모든 S는 P이다
어떤 S도 P가 아니다(=모든 S는 P가 아니다)
어떤 S는 P이다
어떤 S는 P가 아니다
위와 같은 문장을 논리학에서는 정언문장(categorical proposition)이라고 합니다. 쉽게 말해, 두 카테고리 간의 관계를 나타내는 문장이라고 생각하면 됩니다. 수학 집합과 명제 시간에 배워서 다들 익숙할 겁니다.
2. 라이프니츠 다이어그램
라이프니츠는 정언문장을 다음과 같이 선형 diagram으로 나타냈습니다. 따로 설명이 필요하지 않을 만큼 직관적입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 아래 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
3. 오일러 다이어그램
오일러는 원으로 정언문장을 나타냅니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
4. 벤 다이어그램
벤은 오일러 다이어그램을 개량합니다. 아무것도 없는 부분에는 빗금을, 대상이 존재하는 곳에는 x를 표시하는 방식입니다.
예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 다음 그림처럼 표현됩니다. 이때 결론 “모든 S는 P이다.”가 타당하게 도출됨을 직관적으로 파악할 수 있죠.
5. 루이스 캐럴의 다이어그램
벤 다이어그램은 집합이 넷인 경우에는 원으로 나타낼 수가 없습니다.
위와 같이 그리면 ‘A와 D만 있는 영역’과 ‘B와 C만 있는 영역’을 나타낼 수 없습니다.
참고로 벤이 제시한 집합이 4개일 때의 다이어그램은 아래와 같습니다.
이거 말고 아래처럼 꿀렁꿀렁한 버전도 제시하긴 했습니다.
_이미지 출처: Venn, J. (1880). On the Diagrammatic and Mechanical Representation of Propositions and Reasonings. London, Edinburgh, and Dublin philosophical magazine and journal of science. R. Taylor.
이외에도 벤은 집합이 다섯, 여섯인 경우까지도 어떻게든(혹은 억지로) 그림을 그려내긴 했는데, 일곱 개부터는 따로 언급이 없습니다. 실제로 컴퓨터 없이 그려내기가 몹시 어렵고, 추상화 같은 벤 다이어그램이라서 실용적으로 활용하기도 어렵습니다.
이런 문제점을 해결하기 위해 루이스 캐럴은 아래와 같이 사각형으로 나타내는 방법을 고안합니다.
(참고로 여기서 루이스 캐럴은 『이상한 나라의 앨리스』, 『거울 나라의 앨리스』 저자이기도 합니다. 작가이기 전에 수학자이기도 했으며, 『Symbolic Logic』을 쓰기도 했어요.)
사각형의 위쪽은 X, 아래쪽은 ~X, 왼쪽은 Y, 오른쪽은 ~Y를 할당하는 거죠. 그러면 아래와 같이 영역이 나뉩니다. (∧는 and, ~은 not을 뜻함.)
셋일 때는? 안쪽에 사각형을 하나 더 만들어서, 사각형 안에 있으면 Z, 밖에 있으면 ~Z를 할당합니다.
예를 들어, 질병관리청에서 제시한 <중독 분류도>는 캐럴의 사각형을 활용했습니다.
_출처: https://www.kdca.go.kr/contents.es?mid=a20308060100
이런 식으로 나타내면 카테고리가 더 많은 경우도 다음과 같이 체계적으로 나타낼 수 있습니다.
_그림출처: Carroll, Lewis (1896). Symbolic Logic. Macmillan.
6. 파그난의 SYLL
2012년에 발표된 따끈따끈한 다이어그램입니다. 키보드에서 완전히 구현가능합니다.
모든 S는 P이다
S→P
어떤 S도 P가 아니다
S→•←P
어떤 S는 P이다
S←•→P
어떤 S는 P가 아니다
S←•→•←P
직관적으로 화살표 방향으로만 이동할 수 있을 것 같죠? 맞습니다. 예를 들어, “모든 S는 M이다.”, “모든 M은 P이다.”는 S→M, M→P이며, 이를 연결하면 S→M→P입니다. S에서 출발하여 P에 도착했으니 결론 “모든 S는 P이다.”가 타당하게 도출됩니다.
다음과 같은 규칙도 직관적으로 받아들일 수 있습니다.
대우규칙: 어떤 S도 P가 아니다(S→•←P) ≡ 어떤 P도 S가 아니다(P→•←S)
교환법칙: 어떤 S는 P이다(S←•→P) ≡ 어떤 P는 S이다(P←•→S)
그러면 연습을 해볼까요? (직관적으로 “이게 되나?” 싶은 추론들은 다 성립합니다. ㅎㅎ)
1. 모든 A는 B이다. 어떤 A는 C이다. 따라서 ____
A→B, A←•→C를 연결하면 B←A←•→C이고, 이는 B←•→C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 C는 B이다.”입니다.
2. 어떤 A도 B가 아니다. 어떤 A는 C이다. 따라서 ____
A→•←B, A←•→C를 연결하면 C←•→A→•←B이고, 이는 C←•→•←B으로 간결하게 나타낼 수 있습니다. 따라서 정답은 어떤 “C는 B가 아니다.”입니다.
3. 모든 A는 B이다. 어떤 B도 C가 아니다. 따라서 ____
A→B, B→•←C를 연결하면 A→B→•←C이고, 이는 A→•←C로 간결하게 나타낼 수 있습니다. 따라서 정답은 “어떤 A도 C가 아니다.”입니다.
덧: * SYLL은 syllogisms(삼단논법)에서 가져온 용어입니다. 관련 논문은 다음과 같습니다.
Pagnan, R. (2013). A diagrammatic calculus of syllogisms. In Visual Reasoning with Diagrams (pp. 33-53). Birkhäuser, Basel.
7. 라이프니츠의 위엄
오일러 다이어그램이나 벤 다이어그램은 시각장애인이 점자로 인식하기에는 다소 어려운 구조라고 합니다. 그래서 2015년 서울대학교 산업공학과 삶향상기술연구실(박우진 교수)에서 시각장애인을 위한 다이어그램을 개발했는데, 다음과 같습니다.
이렇게 하면 두 집합이 겹치는 부분이 어느 정도인지 점자로도 쉽게 확인할 수 있다고 해요. 뭔가 앞에서 봤던 것과 비슷하죠? 네, 라이프니츠 다이어그램과 핵심 발상이 똑같습니다. 박우진 교수님 연구실에서 라이프니츠 다이어그램을 알고 만들었는지는 잘 모르겠지만, 라이프니츠가 참 대단한 사람이라는 생각이 들긴 합니다. 이 역시 라이프니츠의 위엄이랄까요. ㅎㅎ
8. 잡담
2019학년도 수능에 나온 '가능세계' 다들 알죠? 라이프니츠가 “이 세계는 무한하게 많은 가능세계 중 최선의 세계이다”라고 말한 데서 출발한 개념입니다.
또한 수능국어/PSAT/LEET 준비하는 분들은 '라이프니츠의 법칙'도 이미 알고 있을 겁니다.
"라이프니츠는 만일 X와 Y가 동일하다면 이들이 똑같은 특성을 갖는다는 ‘동일자 식별 불가능성 원리’를 제시했는데"
_출처: 2022학년도 수능 예시문항 국어 5~10번
"두 대상이 모든 속성을 공유할 경우 그리고 오직 그때에만 그 두 대상은 동일하다"라는 라이프니츠의 법칙"
_출처: 2010학년도 언어추론(예비) 25~27번
만약 예시문항을 분석하지 않아서 이 내용을 지금 처음 본 수험생이 있다면, 아래 영상을 꼭 보길 바랍니다. 3분 정도면 출제 포인트를 하나 정리할 수 있습니다. :)
필요충분조건 표현법 #라이프니츠의 법칙
https://class.orbi.kr/course/1888/lesson/40685
이해황
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고정지출 이번 달부터 늘어난 걸 생각을 못 하고 막 써버림 하,,,
-
내일큰거옴tv
-
과탐 강의 2배속하고 기출+수학 파데랑 킥오프만+국어 모고 매일1개씩 간다+영어는...
-
오늘도 파이팅.
-
학원에서 갑자기 종로 모의고사 본다는데 저는 당연히 보는 줄 알고 (왜냐면 돈을...
-
시그모 47 50나오는 샛기들이랑 맞다이가 말이안됨 7
나는 후달리는데
-
누가 될거같음? 한번 찍어보자
-
1. 원래 더 어려울 뻔함 2. 성규쌤 모고 1, 2회가 더 어려움(20번=일반...
-
수능장 빌런연습 3
앞 옆으로 비염이신분들이 계셔서 발런연습을 독재 자습실에서 매일하고는데 진짜 효울도...
-
아 실모 더살까 3
1일2실모마렵
-
현역 예체능 입시 망해서 재수 공부로 틀었음.. 초등학교때부터 예중예고 나와서 평생...
-
사문 질문 4
공유성은 특정 사회 성원이 공유하는 모든 후천적 행동 양식은 문화적 동질성에...
-
정답좀 알려줘 ..
-
..
-
갓셍살아야되는데
-
교수 쏘리.
-
왜 자꾸 117나오는거지…
-
사탐 뒤늦게 시작함. 생윤: 개념 한바퀴 돌리기 지루함. 처음엔 현자의 돌보다가 쌩...
-
ㅈㄱㄴ
-
얼버잠 1
다들 잘자요
-
수학문제가 안풀릴때마다 너무 분해서 집중이 안됨 오늘도 문제집 찢을뻔했는데 화를...
-
. 4
.
-
난 불규칙적인 생활을 11
규칙적이게 해
-
-x 넣어서 빼는 것보다는 합성함수로 인식-> 양변 극소 동일함을 이용하는 게...
-
야식시킴 2
hoe
-
생명 실모 트레일러랑 한종철 풀어보신 분 계신가요!! 2
디카프 트레일러랑 한종철 철두철미 중 하나만 추천해주신다면 어떤게 좋을까요!...
-
잠안오네 조졌다 3
커피를 너무 먹었나...
-
정법 마지막
-
시중에 푼 실모중에 제일 평가원같은듯. 문학 어려운데 답 근거가 명확하고 전반적으로 합리적인 느낌
-
개어렵네. 23분 걸려서 맞춤 역시 건너뛰길 잘했음
-
22번×12문제 0
아 오늘 참 열심히 공부한 듯 패드를 두고와서 인강도 못 듣고 양치기 바로 조지기 ㅋㅋㅋ
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이해원, 킬캠, 양승진모고, 김기현 컬렉션, 빡모 난이도 비교하면 어때요?
-
또 오랜만에 공부하네요 공부 20일도 안하고 시험 치겠네요 ㅋㅋㅋㅋㅋ 정신 못...
-
상황이해는 다 했는데 계산에서 망가짐 ㅍㅍ
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
-
국어 실모 ㅊㅊ 4
한 6개 파밍해야하는데 추천해주샤요 이감 파이널 12회 전회차랑 더프만 풀어봄...
-
지금 저의 제일 큰 문제가 수학이라고 생각이 드는데 전 통통이고 6모 수학...
-
예비고3이라서 가볼까하는데 고2후반부터 인강듣고 거의 혼자 했는데 독학...
-
하긴 할건데 가볍게 하고 넘어가는게맞을까요?? 올수보고 판단하면 되려나요
-
삐딱하게 살아 보려고 함 삐딱하게 살려고 마음먹으니까 괜찮아 다 괜찮아졌어
-
건대 공대가는거랑 취업에서 누가 더 유리함?
-
11덮 국어 3
풀기에 괜찮나요??? 저번주에 풀려고 했느데 저번주에 김승모 완전 망하고 또...
-
성격차이—-—- 남성양육비, 재산분할 남자의 외도——- 남성양육비, 재산분할 여성의...
-
20220722 4
이거 왤케 어렵지 다른 보통의 22번보다 더 어려운 듯 231122랑 난이도 면에선...
-
제보를 한답시고 pdf에 할X스를 담아 보내면 되지 않을까... 예를 들어 킬캠...
-
KK 모의고사 지신 모의고사 뭐로 부르지
-
사자후 한번 질러야되나
-
97점(91min/24번) 검토도 제대로 못하는 시간을 써버렸는데 이 정도 실수면...
파그난의 방식은 좀 어렵네요.
킹갓해황쌤
이것이 바로 라이프니츠의 위엄이죠
이것이 바로 실력파쌤의 위엄
실력파임을 강조하기 위해 본문하단에 제 얼굴사진을 방금 넣었습니다.
찰스 도지슨 A.K.A 루이스 캐럴
뭐라는거죠?
오..
이..이게뭐노..
해황쌤 리트 준비생인데 혹시 오르비클래스에 리기추 강의 업로드 일정계획이 어떻게 되실까요?? 막판에 3개년 기출 정리하고 시험장 들어가려고 하는데 21년도와 22년도는 각각 2지문씩밖에 업로드가 안되어 있어 근 1-2주 내로 추가 업로드 계획이 있으신지 궁금합니다 ㅠㅠ
감사합니다!