[화1] 고난도 문항의 비밀 (1)
안녕하세요 수능 화학 강사 김동준입니다
다음회까지 화학식량과 몰을 마무리(?)하는 의미로
고난도 문항의 비밀 한 가지를 알려드리려고 합니다
사실 제목을 예전에 즐겨보던 웹툰을 패러디해서
역전! 야매화학 이라고 하려다가 너무 따라하는거
아닌가 싶은 생각에 고난도 문항의 비밀 정도로 바꿔봤습니다
(이미 무슨 말 하려는지 감이 오는 분도 좀 계실거같네요)
일단 바로 들어가보겠습니다
2021년 7월 학평 화1 17번입니다
바로 작년 문제라 아마 많은 분들이 기억하고 계실법한
준킬러임에도 불구하고 오답률 1,2위를 다투던 문제였죠
이 문제를 빠르게 해결해보려고 합니다
(가)에서 (나)로 넘어가면서 탄화수소가 17w 첨가됩니다
여기서 (나)에 첨가된 탄화수소를 구성 원소인
탄소(C)와 수소(H) 질량비로 나눠보면 다음과 같습니다
C3H4의 C와 H 질량비 9 : 1
C4H8의 C와 H 질량비 6 : 1
우연히(?)도 모두 더하니 17w가 되네요
→ 9w + w + 6w + w = 17w
여기에 야매를 0.1스푼 정도 추가해서
“탄화수소 종류에 따른 질량비를 대략 알고 있다면”
(가)에서 CxH6 5w이므로 C : H = 4w : w이 아닐까?
C:H=4:1 이면 C2H6?!
정리해보면 (나)에서
C2H6 C : H = 4w : w (5w)
C3H4 C : H = 9w : w (10w)
C4H8 C : H = 6w : w (7w) 이고
따라서 (나)의 C:H 질량비=19:3으로
ㄱ,ㄴ,ㄷ을 처리할 수 있습니다
이 문제를 이론적으로 접근한다고 하면
전체 질량이 17w, 부피는 9V, H 원자 수는 2N 증가이므로
증가한 양을 활용할 수 있습니다
(가)에서 C는 x로 알 수 없지만 H는 분자당 6개이므로
4V를 4몰(상댓값)으로 보아 H 원자를 24몰(=N)로 잡고
첨가한 C3H4와 C4H8의 부피를 각각 aV, bV라 하면
증가한 H 원자 수는 4a + 8b = 48몰(=2N)이 됩니다
부피는 9V 증가이므로 a+b=9이고
둘을 연립하면 a=6, b=3을 얻을 수 있습니다
이를 통해 증가한 질량을 분석해보면
C3H4 (M=40) 6몰, C4H8 (M=56) 3몰의 질량은
40x6 + 56x3 = 408이고 이게 17w 이므로 w=24.
따라서 CxH6 4몰의 질량 5w를 120이라 할 수 있고
CxH6의 분자량은 30이 되어 x=2를 얻을 수 있습니다
다만 여기까지 찾았다고 해도 ㄷ을 해결하기 위해서는
구성 원소의 질량비로 나눠보는게 제일 합리적이겠죠
여기서 복잡하게 각각의 C, H 질량 계산을 하고 있으면
19, 20번을 날리게 되니까요
하나만 더 보면 22학년도 대비 9월 평가원 화1 18번입니다
기체 1g 부피비가 15:22 이면 분자량비는 22:15 이고
여기에 야매를 0.1스푼정도 추가하여
“대표적인 질소 산화물의 분자량을 알고 있다면”
(가)는 N2O (M=44), (나)는 NO (M=30) 입니다
원자량은 Y가 X보다 크다는 조건이 있으므로
Y가 산소, X는 질소이며 따라서 (다)는 N2O3 (M=76).
물론 이 문제도 이론적으로 접근할 수는 있습니다
(가)와 (나)를 비교하면 분자량이 감소하는데
X와 Y의 질량비가 (가) : (나) = 1 : 2 이므로
Y가 증가할 수는 없고 X가 감소하여야 합니다
구성 원자 수가 5이하이고 원자는 자연수이므로
X, Y가 동시에 변해서 질량비 1:2가 나올 수는 없고
Y가 일정할 때 X가 2:1로 감소하는 상황에서
원자량 X>Y를 만족시키는 경우를 찾으면
처음 풀이와 같은 결론을 얻을 수 있습니다
다만 이 문제도 18번 문제이고
여기에 시간을 너무 많이 소모하면
킬러를 풀 시간이 점점 없어지게 되겠죠
여러분이 대비하고 있는 수능은
‘학문’이 아니라 '시험'입니다
화1을 치는 입장에서는 효율적으로 잘보는게 중요하지
얼마나 학문적으로 아름답게 잘 풀었는지가 중요한게 아니거든요
어쨌든 완벽하게 이론적이지는 못한 것이기에 조심스럽고
개인적으로는 이런식으로 화학을 하는게 좀 슬프기도 합니다만
어쨌든 수능 대비에 도움이 되는 관점이기 때문에
단원을 마무리하는 의미로 쓰게 되었습니다
다음 글에는 이 ‘야매’ 풀이가 나름의 근거를 갖는 이유와
자주 나오는 원자량과 분자량 등을 정리하고
주의할 점 등을 이야기해보려고 합니다
오늘도 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
농어촌 편입 0
농어촌인데 일반전형으로 대학교를 가면 편입할때 농어촌 전형 못쓰나요? 초중고 다...
-
내일은 뭔가 23, 132 로 찍으면 좋아요 이유는 저도 모름
-
수능 파이팅 0
잘 보세요
-
독서 인문 수완159 언어개념, 수특54 삼국사기 과학기술 수특206 반도체,...
-
이건진짜 좃된부분인데 암튼 team 화작미적정법사문 화이팅
-
헬리콥터만 나오지 말아라... 양력 받음각 이딴 거 나오는 순간 +1해야한다고..
-
입결상으로는 성신여대가 더 높나요 부산대가 높나요? 부산대가 요새 많이 떨어진...
-
기운받고 서성한 쟁취함
-
안자고 뭐하십니까! 주무십셔
-
필수인거
-
후.... 나도 오늘 취업지원센터 연계 기관에서 2D도면 시험 치고 옴 잘 보고...
-
신기하당
-
제가 올린 자료를 3일만에 이렇게 많은 분이 구매하신 데는 이유가 있습니다! 맛보기...
-
포기각서 쓸만했음
-
찢고와야지 3
부와악
-
대학생과 예비고3들의 시간이다 술과 문제지를 대령하라~
-
10분만 있으면 디데이니까..
-
저희학교 내신은 그냥 싹다 변형에다가 외부지문이 40퍼정도 되서 모의고사랑 문법...
-
어디가 더 좋을까용 독재는 왕복 1시간걸려요
-
수험생 있으면 지금이라도 오르비 끄고 눈이라도 감아라
-
시 한편 써봤습니다. 우리 모두 진실된 봄이 올테니 모두 화이팅...!
-
ㅈ반고1입니다 통과 모고 내신 1입니다 2학년 내신대비 장풍 [지구과학I] 2024...
-
영상 스샷이라 화질이 ㅂㄹ 긴한데
-
아씨발 3
잠 쳐들라고 또 못자고 가겠네 ㅅㅂ
-
닉변완 3
수능 잘 보실 거라고 믿고 미리 했지요
-
생명 0
개념형이 빡세게 나올삘인데 뭔가...
-
한시간 넘는 시간동안..불끄고.눈감고 있었는데 잠이 안와요 돌겠네요
-
차 많이막힘? 0
낼 차타고가는데 차많이막히나요?
-
드럼스틱 주간지가 많이 어렵나요? 내용 구성이 어떤지 알려주세요…
-
자야지 0
컽
-
작년6평 국수영 443 작년9평 국수영 544(사진없음) 작년 수능 국수영 322...
-
얘들아 올해도 그거하자 그거
-
미적분 한번 했는데 다 까먹어서 12월부터 겨울방학때까지 미적분 시발점+뉴런...
-
캬캬캬
-
ㅋㅋ
-
과탐이 정답일까 2
과탐 표점이 좀 메리트 았개 나올까요.. 물지 하고싶은데
-
고려대 의대 9
님들 고려대 의대는 정시로 확통 2사탐으로도 갈 수 있나요? 100언매 96확통 1...
-
근데 주변에 동덕 옹호하는 페미들 꽤 많다는 걸 느낌 1
오늘 인스타 둘러보는데 그냥 인사만 하는? 이름만 아는 여자애가 스토리를 몇개...
-
큰일났다 4
배가 아픈데 똥이 안나와
-
ㅋㅋ
-
다들 한 마음 한 뜻으로 논란을 잠재우는중 ㅋㅋㅋㅋ 감사합니다....그저 goat
-
오늘은 대공황에 대해 발표를~~ 20수능때 빅데이터 나온다 난리낫엇는데 화작으로 나왓엇음
-
삽질을 너무 많이했네....... 한문 최대경력 준7급 쌩노베 입장에서 완전...
-
해야겠지…?
-
국어가 어려워도 1
멘탈 꼭 붙잡으셔야 합니다 수능장에선 실력보다 멘탈이 더 크게 작용할 수 있슴 ;;
-
어차피 키워드 연계다. 정신승리중.
-
안그래? 기출도 지나고 보면 물로켓소리 듣잖아 ㅋㅋ
-
꼭 아기호랑이로 입학하시길 화이팅
-
다들 홧팅!! 3
첫번째 댓글의 주인공이 되세요!
첫번째 댓글의 주인공이 되셨네요 ㅎㅎ
내신 킬러 문제에도 활용할 수 있을까요?
어느정도 선까지는 될텐데 다 적용할 수는 없을거에요 평가원에 적용하는것도 다음 글에 이야기 하겠지만 이걸로 다 풀린다 가 아니라 적절하게 섞어서 쓰는 방식이 될거라서요
넵
잘보고갑니다
맨날 잘 보고있습니다 ㅎㅎ 사소한거라고 생각할수도 있는데 이런 팁들을 생각하다 보면 시험장에서 무기가 될수 있을거라고 생각합니다 !
넵 다양한 도구를 갖춰놓으면 그만큼 더 도움이 될거에요~ 답글 고마워요 ^^
정말 화학1은 아름다운 풀이니 뭐니 수학이랑 비슷하면서도 결국 빨리 확실하게 푸는 것이 최고의 풀이인 것 같습니다
해설에서는 이론적으로 설명해주어야겠지만 잘 풀기 위해서는 요령이 매우 중요한...
그쵸 나름의 엄밀성을 추구하기는 하지만 너무 그쪽으로만 가도 시간이 부족하다보니...ㅠㅠ
혹시 서메기 출강하시는 그분...?
ㅎㅎ 넵 혹시 작년에...?
사실 쌤한테 수업 듣지는 않았는데
올해 윈터스쿨 교재에 쌤 성함이 있어서요
앗 그렇군요 ^^ 기숙사 생활 힘들었을수도 있었을텐데 고생했어요~!