bks10172 [424195] · 쪽지

2013-11-01 10:54:21
조회수 14,225

올해 9평 수리 나형 21번 죽어도 이해안가는 저는 호구인가요?

게시글 주소: https://1ff8ipsi.orbi.kr/0003898929

다른 인강강사들 강의나 인터넷에 올라와 있는 해설을 봐도 도저히 이해안가네요

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • VENU · 448229 · 13/11/01 11:22

    저는 해설강의는 안보고
    해설은 봤었는데 처음엔 뭔말인지 그 최솟값구하는 과정이 갑자기 탁막혔었어요 ㅠㅠ 나중에 다보니까 세세한 기초였다는거 ㅠㅠ

  • bks10172 · 424195 · 13/11/01 16:27

    저도 이 문제만 시간날때마다 계속 풀고 해도 뭔지 모르겠더군요 제가 최대,최소에선 잘 안틀렸거든요 자연계 문제도 최대,최소는 잘 맞췄는데 이번 9평에서 이렇게나 어렵게 낼 수도 있구나 싶었죠

  • marie-ange · 465541 · 13/11/01 11:35 · MS 2013

    비타에듀 정현경샘 해설 봐보셨어요? 저도 이 문제만 해설강의 많이 찾아봤는데 정현경샘 풀이가 가장 명료한 것 같았어요.

  • bks10172 · 424195 · 13/11/01 16:26

    한번 들어보니 다른강사들하고 조금 접근법이 다른 듯 하긴 하네요 정보 감사합니다

  • qwqwqw · 461969 · 13/11/01 11:36 · MS 2013

    문제에서 주어진 조건을 만족시키기 위해서는
    f(x)의도함수 가 -1에서 접하면서 한 실근k을 동시에 가져야됩니다.
    따라서 f(x)의 도함수를 (x+1)(x+1)(x-k)를 둡니다
    주어진 조건에 따라 k의 범위는 -1보다는 크고 2보다는 작거나같습니다.

    문제에서 주어진 f의도함수 = (x+1)(x^2+ax+b)는 (x+1)(x+1)(x-k)로 표현할 수 있습니다.
    양쪽 식을 전개하여 계수들을 비교해보면 a=1-k , b=-k 가 됩니다.

    a^2+b^2 의 최대최소를 찾아야 되므로
    (1-k)^2 + (-k)^2 의 최대최소를 찾습니다.
    전개를 시켜보면 2k^2 - 2k + 1 이라는 2차함수가 나옵니다.
    여기서 k의 범위가 -1보다크면서 2보다같거나 작으므로
    k가 1/2일때 최솟값을 가지고 2일때 최댓값을 가집니다.
    따라서 최솟값은 1/2 이고 최댓값은 5 이므로 최댓값과 최솟값은 합은 11/2 입니다.

  • bks10172 · 424195 · 13/11/01 16:23

    아 이제 조금 알겠네요 답변 감사합니다

  • 독xae · 450246 · 13/11/01 12:37 · MS 2013

    굳이 식 나열하지 않고 그래프를 그려보면 쉽게 풀려요. (-∞,0)의 구간에서는 도함수의 값이 무조건 음의 값을 가지면 되고, (2,∞)의 구간에서는 도함수 값이 무조건 양의 값을 가지게만 하면 되거든요.

    이렇게 되기 위해서는 도함수 (x+1)(x+1)(x-c) 에서 c의 값,즉, c라는 실근이 0≤c≤2를 만족하기만 하면 되는겁니다. 한 번 그래프를 그려보세요. 0 보다 크고 2 보다 작은 구간에서 도함수 값이 양수로 바뀌는 함수를 무수히 많이 그릴 수 있을 겁니다.

    이런 후에, (x+1)(x+1)(x-c) = (x+1)(x^2+ax+b) --> (x+1)(x-c) = x^2+ax+b 로 만드실 수 있구요, 좌변을 전개한 후 도출한 a,b의 값을 통해 a^2+b^2을 이차함수의 꼴로 바꾸고, 이 이차함수를 완전제곱식 형태로 바꾸세요. 그리고 0≤c≤2의 구간에서 최대, 최소를 구하면 됩니다.

  • bks10172 · 424195 · 13/11/01 16:23

    이제 조금 상황파악이 됩니다 답변 감사합니다