[1-6] 수학적귀납법의 이용방법
1STEP 서술의 기본 (필수 커리큘럼)
[1-2] 제시문에 주어진 정리(Theorem)의 이용방법
[1-6] 수학적 귀납법의 이용방법
[1-7] 수학용어의 이용방법
[1-8] 경우를 나눠서 서술하기
#수리논술사용법 #서지현 #수리논술
0 XDK (+1,100)
-
500
-
500
-
100
-
(수능 대비 1회 답안 입력 실수 — 87점) 김승리 6평 대비 재수생 선배한테...
-
어두운데서 핸드폰 안볼게요ㅠㅠ
-
https://test.mensa.no/Home/Test/unknown ㄱㄱ 댓글로 서로 공유하자
-
"손 잘리고 두개골 찢어졌다"…등굣길 도끼 든 10대 난투극 5
프랑스 파리 외곽 열차에서 10대 청소년들이 도끼를 들고 싸워 4명이 부상당했다....
-
마닳 해설 그냥 정독하기 반복해서 해설 보면 잘 이해 안가던게 하나둘씩 보이는 느낌이 듦
-
국어 화작은 작수급 문학도 작수급 독서는 6평급 수학 작수 22번처럼 간단해보이는데...
-
끄아ㅏ아아아ㅏ아ㅏㅏ앙
-
신분사회에서 천민은 역할임 신분개혁을 시도하는건 역할 행동으로써 제재될 수 있음...
-
사문황님들 갈등론이 인간능동성 강조한다는게 어떻게 맞나요 9
인간 능동성 강조 > 이거 거시적관점이 쓰면 안되지않나요?? 인간 능동성 인정이라고...
-
ㅈㄱㄴ
-
뭐지 진짜 세상이 곧 망하려나
-
캬캬캬
-
화장해라 1
진짜 넌 좀 해라
-
기분딱좋은 완벽한 수면
-
20수능 정도로만 나왔으면
-
존나 쉽다길래 안풀려고 했는데 짬내서 풀었는데 29 30 허벌인거 말고 앞에는 걍...
-
베리컷 귀마개 써본사람 있음 ? 후기좀 본인 3m,맥스 써봤는데 맥스보단 3m이...
-
타이밍놓쳤네
-
편의점 매콤닭꼬치도 존나 맵고 CU에서 990원 하는 매콤나쵸? 이것도 존나 맵고 아 너무 매워
-
이감과 상상 풀고있어서 2~3개만 더 추가할려합니다 김승모 한수 바탕 혜윰 기타...
-
솔직히 D+1은 불가능 (대충 논술 준비하라는내용) 올려볼까
-
안녕히 주무세요 9
진짜 안 자려고했는데 할게없어서 잠이나 자야겠음..
-
화장해라 4
-
그 뭐지 급수로 표현된거 1/n dx로 바꾸고 뭐시깬지 하는거 이거 미적분 내용인가요?
-
여루비 잠와 후우웅
-
저랑 싸우실분 8
험한 말 맞받아치기 콘테스트
-
예비고3 정시 파이터입니다 내신은 버렷지만 수학은 내신 시험 보는 김에 열심히...
-
사문 갈등론 4
갈등론은 불가피성 강조 아니지않아요? 문제 이상한거 맞죠?
-
올바원 어떤가요 0
올바원이랑 프로모터중에 뭐가 좋을까요? 프로모터가 해설강의가 없어서 좀 걸리긴한데...
-
후르릅 5
휴릅휴릅
-
다들 너무 쉽다던 9모도 그렇게 쉬운지 모르겠는데 45로 간신히 2 받음 기출 현돌...
-
브레턴우즈 이중차분법 카메라 vs 비타민k 헤겔 육가사상
-
ㅈㄱㄴ
-
표점이 계속 잘나오는 과목같지도않고 하는 사람수는 기하급이고 난이도는 ?스럽고
-
아무거나
-
자사고이고 1학년 1학기 5.3 2학기 5.1 2학년 1학기 5.2 2학기는 6...
-
보통 요 점수대 이상 들어오는 사람들이 평가원도 대부분 1이더라
-
보카로+힙합 1
츄라이
-
그래도 생윤은 좀 잘맞는데 이게 사람마다 다르겠지만 기본개념 베이스로 사상가 전제를...
-
답이 3번이라는데 박스 안이 왜 명나라인지 알려주실분ㅠ
-
1차만 붙어도 ㄹㅇ 간다 ㄹㅇ…..
-
끝났나 1
진짜 오래 하시네 방음 안 되는 원룸인 걸 잊으셨었나 ㅋㅋㅋㅋ
-
이 순서대로 정주행하기
-
인생이 노잼이다보니 노잼인간이 되.
-
걍모든과목이좆됨 개념을 봐도 딱짚어서 틀리기전까진 개념을 아는게아닌거같음 근데...
-
내년 과탐 추천 4
현재 물1 화1입니다 내년에 화학은 아무도 안할거같아 탈출하려고 합니다 화1 대신...
눈나ㅏ>♡♡♡♡♡
이러시면 안됩니다
왜요 ㅠ
선셍님..
미안하다..
ㅋㅋㅋㅌ 책 사들고 알바하러 총총
통수 사랑해
와! 댕댕이!
사용법 기본편 잘보고있습니다 !!
누나.....칼럼 쓴다고 고생이 많아 ㅜㅜ
누나누나 통수가 개이름이에요???
오늘도 덕코 보내고 읽습니닿
칼럼을 매번 좋게 읽고있다는 의미겠지요? ㅎㅎ 덕분에 힘이 난답니다! 감사합니다
꼭 강의 대박 나서 인강도 만들어주세요! 지방러도 듣고 싶어요ㅠㅠ
대신! 집필에 정말 신경 많이 쓸게요! 수업못듣는 친구들이 책으로도 충분히 독학 가능할 수 있도록 강의자체를 책에 담도록 많이 노력하고 있어요 ㅎㅎ 물론 칼럼도요!
언제나 응원하겠습니다!
칼럼 너무 감사합니다♡♡♡
학교 수리논술 수업 답안 쓸때 항상 많이 떠올리고 있습니다! 좋은 칼럼 감사합니다
'~을 보이시오' 형태이면 수학적귀납법이라고 보면되나요?
어미가 중요한 것은 아니고, 무한한 자연수에 대해 등식 또는 부등식을 증명하라는 문제를 증명하기 위한 툴입니다!
모든 자연수 n에 대하여, f(n)=g(n)이 성립함을 보이는 것은
어떻게 보면, 굳이 수학적귀납법을 이용하라는 말이 없는 이상
첫번째로 생각할 수 있는 증명방법이
논제의 결론이 등식증명이므로
f(n)에서 계산을 출발하여
f(n)= ... = .... =.... = g(n)
이 나오면 증명이 끝입니다.
그런데, 수학적 귀납법을 이용하라라는 말도 없이,
모든 자연수 n에 대하여 f(n)= g(n)이 성립함을 보이라 하였는데,
위의 2020연세대 문제와같이
f(n)을 계산하기 자체가 힘든경우,
보통은 수학적 귀납법을 쓰게 됩니다.
그래서, 오히려 모든 자연수 n에 대하여(또는 특정범위로 나올수도 잇습니다. 2이상의 자연수에 대하여 처럼) 등식 또는 부등식을 증명하는 문제들이 수학적 귀납법을 이용할 수'도' 있다고 생각하면 될 것 같습니다.
모든 자연수 n에 대하여 등식 또는 부등식을 증명하는 문제는
등식증명, 부등식증명, 수학적귀납법 3가지 중에서 적절한 증명방법을 택하여 증명하면 됩니다.
어제 서점에 있길레 납치했어요
통수 사료값 입니닷
이과생인데
수열의 귀납적정의
등비급수 도형활용
함수의극한 도형의 활용같은 문제를
잘 못합니다.
수열의 귀납적정의는
어렵게 나오면
굉장히 높은 확률로 29 30 21에 배치 될텐데 매우 걱정이네요 이번 수가 100점 맞아야만 하거든요 오늘 생일인데
이번 생일이 마지막 생일이 되긴 싫습니다.
수열과 급수쪽에 도형과 관련된 문제들에 약하다는 말씀이시군요
어떤 것이 궁금한지 정확하게 말씀해줄 수 있을까요?
께-임 이름이에요
논술 질문도 많이 해주세요 ㅋㅋㅋㅋ 기다리고 있습니다 유우비트의 질문을 ㅋㅋㅋ
옮밍아웃은 에바에요... 현강에서는 모르는척 할검니다...
사실 설명이 혜자라 질문할게 거의 없어요 ^^ 낼 뵙겠읍니다 쓰앵님
항상 잘 읽고 있어요! 아까 오르비에서 샘 포스터 봤는데 괜히 반갑 ㅋㅋㅋㅋㅋ
건강도 챙기십쇼
수학적 귀납법....수열 기출문제에도 많은....
맞습니다 원래 수학적 귀납법은 수열파트에서 수열의 귀납적정의를 배운뒤 수학적귀납법을 배우는 것인데, 수열에 초점보다는 논리전개에 초점을 맞춰 서술편에 실었어요 ㅎㅎ
보니까 수리논술에도 출제 되나봅니다. 재수할 때 부들부들 하면서 공부했었는데 요샌 문제로 안나오니...
혹시나 싶어서, 수학적귀납법을 쓰는 해설부분을 좀 더 자세하게 수정해놨어요
좀더 이해가 잘될거에요 ♥
감사합니다쌤❤❤
닥추
잘보고있습니다
감사해요!
칼럼 잘봤습니다!!~ 혹시 수리논술 문제 질문 드려도 될까요? ㅠ 안풀리는 게 있어서;; ㅠ
쌤!!! 최선을 하되 건강을 생각하세요. 너무 바쁜 것 같아요.